

Crop Surveying UAV

May 1st, 2023

Client: Don Roe

Team Members: Nathaniel Dersom, Connor Williams, Morgan Maurer,

Noah Stephens, Garett Fry, Isaac Harley, Caleb Syler, Luke Shoen, and

Owen Paulus

Faculty/Advisors: Dr. Jose Oommen, Dr. Yuan Meng, Dr. Patrick Majors,

and Dr. Baonhe Sob

MVNU Senior Design

I

Abstract
 The Mount Vernon Nazarene University engineering seniors were tasked with

building an unmanned aerial vehicle (UAV) to survey crops for farmers in Guatemala.

Don Roe, director of the AgInno Institute in Chisec, Guatemala, expressed a need for an

unmanned aerial system to reduce the time and energy that farmers spend observing the

health of their crops on a regular basis. The engineering senior design team quickly

decided to design and build a fixed wing aircraft equipped with a multispectral imagery

system and autonomous flying capabilities. After several months, the team successfully

built a custom fixed wing aircraft that met all of the given requirements. The body of the

aircraft was designed from scratch using computer aided design software and was built

using a combination of balsa wood and composite material. The imagery system offers a

dual camera setup with a wavelength range from 400 nm to 700 nm and 730 nm to 950

nm. The aircraft was also equipped with image processing software, a battery safety

monitoring system, and fully autonomous flying capabilities. Alongside the UAV itself,

the team designed a handheld weather station to monitor the weather conditions prior to a

given flight. The UAV also comes with an instructions manual that explains how to

operate the aircraft safely. This report explains in detail the process taken to design the

UAV as well the lessons learned throughout the year.

MVNU Senior Design

II

Acknowledgements
The team would like to thank each faculty advisor: Dr. Jose Oommen, Dr. Yuan

Meng, Dr. Patrick Majors, and Dr. Baonhe Sob, for all of their guidance and support

throughout the entirety of this project. Each member extends their thanks to the faculty

for their time they have invested in every student over the past four years. The team

would also like to thank Dr. LeeAnn Couts, Sheryl Arden, Justin Longfellow, and the

Department of Natural and Social Sciences. Sheryl Arden deserves much thanks for her

work in handling each of the team’s purchase orders and Dr. Couts for allowing the

opportunity to learn and display the skills learned throughout this project to the School.

The guidance that Justin gave during the building phase of the project is also very

appreciated. Lastly, the team’s gratitude goes towards Don Roe and Aaron Aude. The

team is thankful to Don for allowing them this opportunity and for sponsoring the project

as each member gained great experience in a variety of areas within the realm of

engineering. Aaron Aude offered his time and expertise on unmanned aerial vehicles. His

willingness to help the team throughout the year is deeply appreciated as the project may

not have been successfully completed without his generous support.

MVNU Senior Design

III

Table of Contents

Abstract I
Acknowledgements II
Table of Contents III
List of Abbreviations and Nomenclature V

1 Introduction/Problem Definition 1
1.1 Team Structure 3
1.2 Gantt Chart 3

2 Design 7
2.1 Electrical Team 7

Communication Systems 16
Power System 25
Additional Custom Designs 28

2.2 Imagery Team 47
Crop Analysis 47
Camera System 48
Spectral Analysis 53
Camera Case 58
Lessons Learned 59

2.3 Design and Manufacturing Team 59
Motor Selection & Testing 60
Initial Prototype 62
Wing Design 63
Final UAV Design 71

2.4 Software Team 74
Deliverables 74
Software Selection and Initial Testing 74
Remote Technical Support and Updating 79
GPS Testing 80
Single Board Computer and Camera Hardware Selection 82
Software Overview and Hardware Interfacing 85
Software Conclusion 90

3 UAV Iterations 91
3.1 The Goose (Prototype) 91
3.2 The Mule (Custom Body) 92
3.3 The Gander (UAV 1) 93

MVNU Senior Design

IV

3.4 The Third Bird (UAV 2) 94
4 Conclusions and Future Work 95
References 100
Appendices 104

V

List of Abbreviations and Nomenclature

Table 1. List of Abbreviations

Abbreviation Expansion

API Application Programming Interface

BOM Bill of Materials

CAD Computer Aided Design

Cd Drag Coefficient

CFD Computational Fluid Dynamics

Cl Lift Coefficient

CM Compute Module

EPO Expanding Polyolefin

EPP Expanding Polypropylene

ESC Electronic Speed Controller

FC Flight Controller

FCC Federal Communications Commision

FOV Field of View

FPV First Person View

GB Gigabyte

MVNU Senior Design

VI

Abbreviation Expansion

GNDVI Green Normalized Difference Vegetation
Index

GPIO General Purpose Input-Output

GPS Global Positioning System

HAL Hardware Abstraction Layer

HAT Hardware Attached Top

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IR InfraRed

LiPo Lithium-Polymer (Battery)

MCU Microcontroller Unit

NACA National Advisory Committee for
Aeronautics

NDRE Normalized Difference Red Edge

NDVI Normalized Difference Vegetation Index

NIR Near InfraRed

NTSC National Television Standard Committee

ODM Open Drone Map (Software)

OS Operating System

MVNU Senior Design

VI

Abbreviation Expansion

OSAVI Optimized Soil-Adjusted Vegetation Index

OSD On Screen Display

PAL Phase Alternate Line

PCB Printed Circuit Board

PPM Pulse Position Modulation

PWM Pulse Width Modulation

QBC Quad Bayer Coding

RC Radio Controlled

RAM Random Access Memory

RH Relative Humidity

Abbreviation Expansion

RGB Red, Green, Blue

RGGB Red, Green, Green, Blue

RPI Raspberry Pi

SPD Spectral Power Distribution

MVNU Senior Design

VII

SPI Serial Peripheral Interface

TCARI Transformed Chlorophyll Absorption in
Reflectance Index

UART Universal Asynchronous Receiver-
Transmitter

MVNU Senior Design

1

1 Introduction/Problem Definition
The client of this project was Don Roe, who is the CEO of the AgInno Institute.

He previously worked at the Procter & Gamble Co. for 35 years and has more than 320

U.S. Patents. He and his wife, Lana, have been involved with around 50 mission trips in

conjunction with the Church of the Nazarene. The El Puente station of the AgInno

Institute is based in Guatemala, and focuses on Compassionate Ministries and

Agricultural Research. The first deals with making “life improvements,” like pouring

concrete flooring to reduce disease, or getting better access to water. The Agricultural

Research portion has to do with improving growing techniques of crops.

In conjunction with the Agricultural Research effort, Don Roe asked the team to

“develop a low-cost, easy-to-use aerial field assessment system…to use to assess local

farmers’ fields before planting, during crop growth, and/or at harvest.”[1] The team

morphed this phrase into its own goal statement of “design and test a UAV used to

determine the health of plants in Guatemala.” This begs the question, what is a UAV?

UAV stands for unmanned aerial vehicle. This is essentially what it sounds like. It

is a vehicle that flies in the air with nobody on board. Most people think of these as

drones with four propellers. However, there are also fixed wing UAVs. These can be

thought of as small airplanes. UAVs are remote-controlled and some have autopilot

features.

Thus, the goal of this project was to create a UAV that can take pictures of a field

of crops and determine the overall health of them to help farmers make better decisions

while caring for them. This was not all the requirements needed, however. Through

talking to Don Roe, it was determined that he needed first person view (FPV), manual

and automatic control, communication, weather proofing, near infrared (NIR) and visual

light (RGB) cameras, small form-factor, a user interface, and easy maintenance. On top

of this, Mount Vernon Nazarene University’s department of engineering and supporting

faculty required the team to factor in the requirements and constraints in the table below.

MVNU Senior Design

2

Table 1.1. Requirements and Constraints

Creativity and Innovation Form and Function

Marketability Documentation

Presentations Economic Concerns

Environmental Concerns Social Concerns

Political Concerns Ethical Concerns

Health and Safety Manufacturability

Sustainability Supply Chain Issues

 Creativity and innovation refer to the ability to find solutions to complicated

problems and foresee the possible consequences of one’s work. Form and function deals

with making sure the product design works as expected. For marketability, the project

must be something that can be sold (theoretically). The documents associated with this

project, like the instructions and final report, fall under the category of documentation.

This project must also have multiple presentations throughout the duration. Economic

concerns are dealing with money and buying components, as well as costs for other

things like labor. Environmental concerns focus on making sure that the project does not

harm the environment. In the category of social concerns, the team must make sure that

people do not have a negative view of the product. Political concerns must take into

account the laws of governing bodies and avoid choosing a political side. In ethical

concerns, engineers must protect the safety and welfare of the public above all else. This

also helps to explain the health and safety constraints. The product must be something

that can be made repeatedly for it to cover the manufacturability category. The product

must also have a reasonable lifespan for it to be sustainable. Finally, this project had to

deal with supply chain issues where components were unavailable to be purchased.[2]

MVNU Senior Design

3

1.1 Team Structure
 The team was given four roles to fill: project manager, lead engineer,

documentation master, and product engineers. The project manager was in charge of the

budget, meetings, scheduling, and presentations. The lead engineer was in charge of

directing each team on what to research and do, as well as combining the efforts of each

group. The documentation master managed the documents like the reports and

instructions. Finally, the product engineers’ jobs were to research and build the UAV.

The first three roles would be filled by one person each, with the others being the rest of

the team. It was decided that Connor Williams would be the project manager, Nathaniel

Dersom would be the lead engineer, and Owen Paulus would be the documentation

master. The product engineers included Morgan Maurer, Noah Stephens, Garett Fry,

Isaac Harley, Caleb Syler, and Luke Shoen.

 Aside from these positions, everyone was put into smaller groups in order to focus

on, and become an expert in one area. These groups consisted of the Electrical, Imagery,

Design and Manufacturing, and Software teams. Within the Electrical team was Owen,

Isaac, and Caleb. This team’s goals were split into three different areas: the flight

controller, peripherals, and designing a custom PCB. The Imagery team included Noah

and Luke. This team’s goals involved taking pictures while in flight and then analyzing

them to ascertain the health of the crops. The Design and Manufacturing team included

Morgan and Garett. This team’s goals were to create and build the body of the UAV. The

Software team consisted of Connor and Nathaniel. This team worked as the glue for the

other teams, as well as the developers of a large portion of the software embedded in the

UAV. Each team goes more in depth into their work in Chapter 2.

1.2 Gantt Chart
Throughout the year, a Gantt chart was created and updated to guide the team. A

Gantt chart is a schedule designed to be quickly and easily understood with a glance. The

final Gantt chart can be seen below. Going from left to right, the chart is split into months

and weeks. The labels on the left side are split into four deliverables: Documentation,

Presentations, Testing and Product. These are the four major deliverables the team

determined were needed by the end of the project. Each of these deliverables then go into

MVNU Senior Design

4

more detail with the Task Title. This gives an overview of what needs to be done. The

Task Owner is the person most in charge of each task. The Start and End Dates describe

the timeline of the task. Finally, Percent of Task Complete shows an estimate of how

much has been accomplished for the task. This section was readjusted weekly.

Fig. 1.1. Gantt chart fall semester

MVNU Senior Design

5

Fig. 1.2. Gantt chart spring semester

Going more in depth with the task overviews, the Documentation category is what

the team leaves behind for others to learn from. This includes weekly and monthly

reports to show the overall progress of the project, as well as instructions for operation,

maintenance, and troubleshooting on the UAV. The Presentation category can be seen as

a simplified version of the Documentation deliverable. There are two major presentations

throughout the year, the Preliminary Design Review at the end of the first semester and

the Final Presentation at the end. These presentations describe what the team has done

and how within about an hour to an hour and a half.

The Testing category is the biggest and most demanding. This includes the initial

research that each team had to do in order to understand the project, as well as additional

research and work on certain aspects of the project. The additional research components

and implementation thereof is classified as Custom Designs because it is what the tem did

to make the UAV unique.The Design and Manufacturing team made customized wings

and a hull. The Electrical team created a custom printed circuit board (PCB) and

MVNU Senior Design

6

connected the communications systems to each other. The Software team wrote code for

the single board computer (SBC). Lastly, the Imagery team designed a protective case

and changed filters for the cameras.

The last category is the Product category. This basically includes the final UAVs

that will be given to Don Roe and MVNU. Both the assembly and flight test of each

UAV was added, as both of these needed to be done for the product to be finished.

MVNU Senior Design

7

2 Design
2.1 Electrical Team
 The electrical team focused their work in four main areas throughout this project.

The areas include the flight controller, the communication systems, the power system,

and additional custom designs. Each area will be expounded upon throughout the

remainder of this section.

Flight Controller

The brain of the UAV is the flight controller. This module controls all of the flight

aspects of the aircraft and enables control and autopilot as well as flight planning. This is

accomplished through multiple sensors and inputs such as, the GPS module, the airspeed

sensor, the telemetry system, and the RC system. Combining this with the internal

gyroscope and compass, as well as control over the aircraft’s control surfaces and

propeller allows the Flight Controller to conduct and control the flight of the aircraft

autonomously in tandem with a ground station. The flight controller allows the Crop

Surveying UAV to behave autonomously allowing for ease of data collection after a

flight has been planned and uploaded.

 The flight controller chosen for the UAV was the Matek 743-Wing V3. This

particular flight controller makes use of an STM32 microprocessor and has inputs for all

the necessary systems listed above. This flight controller was chosen because of the

familiarity of the STM32 microcontroller architecture to the electrical team, as well as its

similarity to the flight controllers demonstrated by Aaron Aude.

MVNU Senior Design

8

Fig 2.1. The Flight Controller

Preparing the flight controller for flight was a lengthy task of making numerous

changes to the physical structure of the device, as well as flashing the flight controller

and configuring numerous parameters for each attached system. Flashing is the action of

replacing the data on a microcontroller with something new, in this case the ArduPilot

firmware was flashed. The numerous physical changes made include the addition of

soldering pin headers for:

● Header Group 1: Cts7, Rts7, Tx7, Rx7, 5V, G. These pin headers are for connecting

the telemetry radio.

● Header Group 2: DA1, CL1, Tx2, Rx2, 4V5, G. These pin headers are for connecting

the GPS module.

● Header Group 3: Rx6, 4V5, G. These pin headers are for connecting the radio

receiver.

● Header Group 4: C2, Vsw, G. These pin headers are for connecting the FPV camera

(relay must be switched to activate camera 2).

● Header Group 5: G, 5V, LED, VTx. These pin headers are for connecting the FPV

transmitter.

MVNU Senior Design

9

● Header Group 6: S1, and S3-S7. S1 and S2 are reserved for ESC outputs, S3-S10 are

customizable. S3-S6 are being used for elevon and aileron outputs and S7 is used to

trigger photo capture mode.

● All of the added female pin headers can be found in Fig. 2.2.

Fig. 2.2. The Addition of Pin Headers

Additional changes include connecting the top board to the bottom electrically

through the ports shown in Fig. 2.4, as well as setting the voltage of the VSW to five

volts by bridging the pad circled and zoomed below in Fig. 2.3. This voltage is necessary

for the use of the FPV system.

MVNU Senior Design

10

Fig 2.3. Setting the VSW[3]

The electrical connection of the bottom and top boards was completed through the

soldering of silicon wire to the ports circled in Fig 2.4 and Fig 2.5.

Fig 2.4. Electrically Connecting the Boards[3]

MVNU Senior Design

11

Fig 2.5. Method of Electrical Inter-board Connection

A final addition is the connectors for powering the flight controller, and powering the

ESC which controls and powers the motor. These connectors are soldered to the pads

circled in Fig 2.6 and Fig 2.7.

MVNU Senior Design

12

Fig. 2.6. Connection of the Power/ESC Connectors[3]

Fig. 2.7. Method of Power/ESC Connection

MVNU Senior Design

13

After this, the flight controller was electrically ready for all the necessary inputs and

outputs that would be used by the UAV.

 The flight controller must be flashed with firmware that allows it to interface with

a ground station in order to program and control the flight controller. The ArduPilot

firmware was used for the control of the UAV and was flashed to the flight controller. In

order to do this, the STM32Cube Programmer software was used to erase the

microcontroller data and flash the selected version of ArduPilot Plane.

Fig. 2.8. The Software Used to flash the Flight Controller[4]

Fig. 2.9. The USB connection to the Flight Controller

The Cube Programmer connects to the flight controller through the USB

connection provided by the USB/Buzzer Dongle included in the flight controller kit from

Matek. This USB connection is the main way the flight controller (FC) is programmed

when grounded.

MVNU Senior Design

14

 The FC, having been prepared for connection through the physical changes and

firmware flashing, was then connected to the ground station software. The ground station

software used was called Mission Planner. This software is closely connected to the

ArduPilot website and as such has considerable documentation. This software was used

to configure the FC and calibrate all inputs and outputs in order to allow the FC to

correctly control the UAV autonomously, as well as manually with the use of the RC

system. After the connection of the FC to the Mission Planner Software, the FC was

configured.

There were many parameters that were set in order to enable the interconnection

of all the peripherals as well as the control surfaces. From Mission Planner, the RC

system was connected and then calibrated. The servos that control the flight surfaces

were then set to their corresponding preset positions. For example, servo three was set to

the Right V-tail preset. After an extensive setting of parameters and calibrations through

the use of Mission Planner, as well as setting the min/max of the servos, the flight

controller could be controlled through the use of RC. It could also be controlled by

Mission Planner though the telemetry system. The FPV system was also configured

through Mission Planner as it controls the channel that the FPV will be transmitted

through to be set, as well as setting an On-Screen Display (OSD) internal to the FC.

Parameters Set:

● SERIAL1_BAUD =57 (default), controls the baud rate of the telemetry system.

● SERIAL1_OPTIONS = 0 (default)

● SERIAL1_PROTOCOL = 2 (default), option two is for MAVlink 2.

● ARSPD_USE = 1

● Servo 1 set to Throttle

● Servo 2 set to Disabled

● Servo 3 set to Vtail Right

● Servo 4 set to Vtail Left

● Servo 5 set to right Aileron

● Servo 6 set to left Aileron

● Servo 7, set to RC5 for photo capture activation on Raspberry pi

MVNU Senior Design

15

● MIXING_GAIN = 1.2

● BRD_ALT_CONFIG = 1, this makes RX6 become the SERIAL7 port’s RX input

pin.

● SERIAL7_PROTOCOL = 23

● SERIAL7_OPTIONS = 12

● RSSI_TYPE = 3

● SERIAL7_BAUD = 57 (default)

● FLTMODE_CH = 7, controls what RC channel swaps flight modes

● Flight modes set to: Manual, Autotune, FBWB

● VTX_POWER (Left at default)

● RELAY_PIN2 = 82 for camera 2 on/off.

● VTX_ENABLE = 1

● VTX_CHANNEL = 0 (default is 0)

● VTX_BAND = 0 (default is 0 for band A)

● INITIAL_MODE=0 (manual flight)

● COMPASS_AUTODEC = 1

● COMPASS_AUTO_ROT = 2

Flight modes were also configured through Mission Planner allowing the FC to be

controlled manually, or to fly autonomously, as well as to enter a mode that calibrates the

autopilot over time according to each unique aircraft.

MVNU Senior Design

16

Fig. 2.10. The First Flight Controller

 Once Mission Planner was utilized to configure the FC, the FC was able to

control the UAV. Mission Planner could then be used to monitor the flight through the

use of the telemetry system. This combined with the manual input from the RC radio

allows the FC to conduct flights. This is how the first test flight of the UAV was

completed. Once a first FC was completed, a second FC was set up in much the same

way with the benefit of lessons learned. This will allow Don and his team to complete

flights in Guatemala while working together with the imaging system to collect the

required data.

Communication Systems

The transfer of signals is one of the key aspects of the functionality of every

UAV. For the UAV that the team developed, there are a total of four communication

systems to achieve this in four different ways: telemetry, radio control (RC), first person

view (FPV), and the global positioning system (GPS). With three different signals within

the same medium, there were some factors to be considered to mitigate any potential

MVNU Senior Design

17

distortion, namely directionality, polarization, and frequency. Another factor considered

was the legal standard of communication bands within Ohio, the United States, and

Guatemala. Finally, the constraint of optimizing both at the least cost and the best

functionality was considered in the selection of each component.

 Electromagnetic fields and waves and the theory behind them is important to

consider when considering radio communication, as well as general communication

theory. In fact, interference is important to consider when estimating the range of the

entire communication system. Constructive interference is how to direct a signal to

prolong the distance that it can propagate before attenuation while sacrificing how wide

the angle of the beam would be: 360° for one is considered as “omnidirectional”. The

directivity of an antenna is given by the ratio of the maximum power of a signal

transmitted relative to the total power of a signal transmitted, as defined in IEEE

standards.[5] Eq. 2.1. shows the multivariable function using spherical angles representing

a signal’s directivity for a certain set of spherical angles:

 𝐷𝐷(𝜃𝜃,𝜙𝜙) = 𝑈𝑈(𝜃𝜃,𝜙𝜙)
1

4𝜋𝜋∫ ⬚𝜙𝜙=𝜋𝜋
𝜙𝜙=0 ∫ ⬚𝜃𝜃=2𝜋𝜋

𝜃𝜃=0 𝑈𝑈(𝜃𝜃,𝜙𝜙)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
,

(Eq. 2.1)

where 𝜃𝜃 is the zenith or elevation angle, 𝜙𝜙 is the azimuth or horizon angle, 𝐷𝐷(𝜃𝜃,𝜙𝜙) is

directivity, and 𝑈𝑈(𝜃𝜃,𝜙𝜙) is the radiation intensity. In order to find the maximum value for

𝐷𝐷(𝜃𝜃,𝜙𝜙), called directive gain, simply replace 𝑈𝑈(𝜃𝜃,𝜙𝜙) with the maximum of 𝑈𝑈(𝜃𝜃,𝜙𝜙) in

Eq. 2.1, because of the unchanging nature of the integral in the denominator. This is the

case where the direction is not specified.[5] In order to quantify this with a type of unit

used extensively in antennas, Eq. 2.2 shows how to relate the directivity of one antenna

with that of another:

 𝐷𝐷𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝑙𝑙𝑔𝑔10[𝐷𝐷
𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟

], (Eq. 2.2)

where 𝐷𝐷 is the directivity in question, 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 is the directivity of the reference antenna, and

𝐷𝐷𝑑𝑑𝑑𝑑 is the resulting compared directivity in decibels [dB]. By using an ideal isotropic

antenna for 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 in Eq. 2.3, the equation then becomes:

 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝑙𝑙𝑔𝑔10[𝐷𝐷], (Eq. 2.3)

where 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 is the resulting directivity in decibels relative to isotrope [dBi]. This directive

gain is how the different antennas are compared in functionality. Fig. 2.11 compares the

MVNU Senior Design

18

directive gain of an isotropic antenna, an omnidirectional antenna, and a directional

antenna as well as visually shows the generalized area of coverage that a signal using

these antennas would be subject to.

Fig. 2.11. A Visual Example of the Difference of Gains Using Different Directivity[6]

 Another factor considered in the selection of antennas was the polarization of the

signal. Polarization is the changing of shape of an electromagnetic signal in order to

combat interference by objects in the way of the signal. A reason to do this, especially in

the case of UAVs, is to assure that the highest percentage of a signal is received,

regardless of the location and potential of physical obstacles to obstruct the path of the

signal and attenuate its strength. This is especially important to signals that require higher

frequencies, because there would be more of a chance that a large amount of data would

be attenuated because of an obstacle. This is where circular polarization comes in, shown

in Fig. 2.12.

MVNU Senior Design

19

Fig. 2.12. A Graphical Example of Circular Polarization[7]

As shown in Fig. 2.12, circular polarization twists the signal about the axis of

propagation, sometimes referred to as the Poynting vector in electromagnetic theory, to

mitigate the disruption of signals of the same frequency or obstacles that would absorb

the signal should it be linear instead. Also seen in Fig. 2.12 is the fact that there are two

different types of circular polarization given the two different ways a signal can twist

geometrically.

 Lastly, the frequency of each system was carefully selected to be both legal on an

international, federal, and state scale and optimized for the best functionality to maximize

distance and minimize power draw. Within the realm of legality, upon initial research by

using the standards by the Federal Communications Commission (FCC), the bands

allocated for telemetry are within any of the bands that are primarily used for

radiolocation.[8] But out of safety, and in considering the international standards as well,

the lowest frequency that could be selected within constraint is 433 MHz because that

band has a secondary purpose labeled “amateur”.[8] Similarly, for the RC system, 2.4

GHz was selected because it falls within the primary category of “amateur”[8] as well as it

being a very common frequency used for remote controls to ease the selection of

components. For the FPV system, a higher frequency is desirable because the higher the

frequency, the faster higher resolutions of data can be transferred. This meant that, for

full color live FPV, 5.8 GHz was selected for being within the same primary and

secondary categories as 433 MHz, being radiolocation and “amateur” respectively.[8]

MVNU Senior Design

20

With regards to the GPS, the band cannot be outside of either the range from 1164 to

1240 MHz or the range of 1559 to 1610 MHz by FCC standard[8], so the module was

selected based on the best compatibility for the flight controller, the Mateksys module

M8Q-5883 for compass and GPS was selected as shown in Fig. 2.13.

Fig. 2.13. Mateksys M8Q-5883 Compass and GPS Module[9]

As seen in Fig. 2.13, the GPS module uses a patch antenna. There was no need to alter

this module’s setup.

 An intermediate step was accidentally overlooked when selecting the

communication systems, specifically for the RC system. As for the GPS, all wireless

communication systems have to have matching wired communication systems with the

flight controller. As seen in the previous subsection, the FPV system, telemetry system,

GPS, and R/C system all must have some form of serial communication known as

universal asynchronous receiver-transmitter (UART). Unfortunately, in selecting the

remote controller—a similar controller as used by Aaron Aude in his demonstration

during the research phase—for the UAV, shown in Fig. 2.14, this was overlooked for the

receiver of the RC system, where it outputted multiple pulse-width modulated (PWM)

signals for a servo or the electronic speed controller (ESC) of a motor.

MVNU Senior Design

21

Fig. 2.14. Spektrum SPMR1010 R/C Controller[10]

A solution was investigated to combine these signals into a singular pulse-position

modulated (PPM) signal or a serial value by an additional external module. A PPM signal

is a chain of PWM signals separated by different time intervals in a specified order,

whereas the serial value is a more compact and faster way of representing the value of a

PWM signal with a hexadecimal value. In fact, it was better to replace the entire receiver

with another one that does this on the same board to reduce any potential latency in

computing, which provides potentially a faster response time than of an external compute

module. So, in order to fix the issue, the selected receiver used in the UAV is the

SPM4650 by Spektrum, shown in Fig. 2.15.

Fig. 2.15. Spektrum SPM4650 RC Receiver[11]

MVNU Senior Design

22

Since this receiver has automatic antenna switching, it theoretically simulates the

functionality of a dipole antenna. As for the remaining systems, there was no

compatibility issue between the devices and the flight controller.

The FPV system uses a camera that can follow either National Television

Standard Committee (NTSC) or Phase Alternate Line (PAL) standard via switching,

shown in Fig. 2.16.

Fig. 2.16. Caddx Ant Wide Dynamic Range Camera for FPV capture[12]

This camera then sends its image data directly to the flight controller into its onboard on-

screen display (OSD) integrated circuit (IC) for an additional overlay of data for the data

from the other peripherals of the UAV (eg. air-speed, direction, roll and pitch, etc.), and

then is sent to the selected FPV transmitter, shown in Fig. 2.17.

MVNU Senior Design

23

Fig. 2.17. Lumenier SM-25 Video Transmitter (VTX)[13]

Since the video transmitter is at such a high frequency, in order to secure a clean

connection with minimal interference, the signal was left-hand circularly polarized by

using a pagoda antenna, shown in Fig. 2.18.

Fig. 2.18. Emax Pagoda Antenna[14]

There was another type of shorter pagoda antenna from the same manufacturer used in

the prototyping process, but unfortunately that antenna has been discontinued. Luckily

the gain across both of these antennas is approximately the same, so the functionality

should only be affected marginally. The FPV signal then is transmitted to either another

one of the antennas shown in Fig. 2.18 or in a patch-pagoda antenna as shown in Fig.

2.19.

MVNU Senior Design

24

Fig. 2.19. Realacc Direction Circularly Polarized Pagoda Patch Antenna[15]

The signal from either of these antennas are finally shown in the video receiver, shown in

Fig. 2.20. This is achieved by either automatic or manual switching, depending on the

setting of the receiver.

Fig. 2.20. Zerone LCD Screen Monitor for FPV Signal Receiving[16]

 Finally, the telemetry system was a pre-packaged system that can use either a

module directly with USB or hard-wired into the flight controller, shown in Fig. 2.21. It

MVNU Senior Design

25

uses the selected 433 MHz and connects with the flight controller using serial wire

connection.

Fig. 2.21. HolyBro SiK Telemetry Radio v3 for the Telemetry System[17]

This system uses the stock monopole antennas included with the system. However, if

there were more time in this project, the antennas for this system could also be

customized to optimize the range even further.

Power System

 Considering all of the components utilized within the UAV, the team performed a

power consumption study prior to selecting a battery to power the system. Before

performing the study, the team had decided to use a 4-cell lithium polymer (LiPo) battery

to power the UAV. LiPo batteries are commonly used in both fixed wing and multirotor

UAVs and were highly recommended by the UAV domain expert, Aaron Aude. LiPo

batteries are compact and offer a high energy density compared to other batteries with

similar energy specifications. Once the team decided to utilize a LiPo battery for the main

power source on the UAV, calculations could be made to predict battery performance

under specific loads. The power consumption study gave the team insight into what

specifications on a LiPo battery were necessary for safely powering the aircraft as well as

maximum flight times under a specific load. Fig. 2.22 displays a breakdown of the study

on an Excel spreadsheet.

MVNU Senior Design

26

Fig. 2.22. Power Consumption Study

 All of the components that consume electrical power within the UAV were

included in this study. The team studied each component’s datasheet in order to find their

maximum current or power draw values and their operating voltages. Once these values

were located, they were compiled into the spreadsheet and the maximum power draw for

each component was calculated using Ohm’s Law found as Eq. 2.4. Using Ohm’s Law

once more, the maximum power draw for each component was divided by 14.8 volts to

obtain the maximum current draw from each component directly off the LiPo battery’s

four cells (3.7 V per cell). The maximum current draw values could then be summed

together to realize the whole system’s maximum current draw when each component is

running at their full capacity. The team calculated that the system’s maximum current

draw was roughly 34 A. However, it is not expected to ever reach 34 A because the

motor has been predicted to only draw around 5A at the high-end during a given flight.

This prediction is based on both the thrust test explained in Section 2.3 and Aaron Aude’s

experience in monitoring motor performance on his personal fixed wing UAVs. Although

the system will be much more efficient than calculated in this study, the team wanted to

MVNU Senior Design

27

gather data considering the worst-case scenario. This data gave us insight into how long

the UAV could fly during a worst-case scenario using different LiPo batteries.

 𝑃𝑃 = 𝑉𝑉 × 𝐼𝐼 [𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊] (Eq. 2.4)

In this study, the specifications on two different LiPo batteries were compared.

Using their specifications and the maximum current draw value calculated for the UAV

system, it was determined how long the batteries would last during a given flight. Eq. 2.5

was used to determine the maximum flight times. After comparing the specifications, the

team decided on a 5000 mAh, 25C, 4-cell LiPo battery made by Turnigy as seen in Fig.

2.23. This battery offers the UAV around 35 minutes of flight time when all components

are running at their maximum capacity and the motor is drawing around 5 A as predicted.

However, the team believes that the UAV can last well over an hour before the battery is

depleted because of the electronic speed controller (ESC) that connects the motor to the

flight controller. The ESC varies the voltage supplied to the motor to increase its

efficiency mid-flight. This feature reduces the power supplied to the motor which in turn

allows for longer flights. Another factor that will extend the flight time is the amount of

gliding that will be performed during a flight. When the UAV is making passes over a

field, there will be times when the motor is driven at very low speeds which will reduce

the power drawn from the battery. Although the battery’s life for an average flight is not

known, the pilot will have visible access to the battery’s charge percentage on Mission

Planner in real-time during a flight. The Turnigy 5000 mAh LiPo battery will be a

reliable battery with little to no performance loss over time as long as the battery is

properly used and stored.

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐴𝐴ℎ)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐴𝐴)

 [𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] (Eq. 2.5)[18]

MVNU Senior Design

28

Fig. 2.23. Turnigy 5000 mAh LiPo Battery[19]

Additional Custom Designs

 In addition to the UAV, the team decided to design a custom circuit board and a

handheld weather station to ensure safe use of the product. Early in the fall semester the

team brainstormed on how to implement a custom printed circuit board (PCB) into the

UAV’s design. After considering the tropical climate of Guatemala and the nature of

LiPo batteries, the team decided to design and implement a circuit board that would

monitor the battery’s external surface temperature and compare it to the relative humidity

and ambient temperature of the surrounding environment. LiPo batteries are temperature

sensitive power sources that have an operating temperature range of -4o to 140o F.[20] The

temperature of the battery naturally increases when connected to a load. Considering the

nature of this type of battery and the warm temperatures that will be present, the team

realized the potential risk of overheating. If a LiPo battery exceeds a temperature of 140o

F, it could potentially explode and cause damage to the surrounding components or the

user. Though the LiPo battery is not expected to reach its maximum temperature during a

given flight in Guatemala, the custom PCB would allow the user to monitor the

temperature of the battery and its performance in different weather conditions. The

custom PCB would also have the ability to send a signal to the flight controller if the

battery reached a certain temperature as result of an electrical short onboard the UAV.

 Once the team decided to pursue the design of a battery monitoring PCB, research

was performed on the components necessary for the design requirements. Firstly, the

team decided to use the Si-7021 temperature and relative humidity sensor found on a

MVNU Senior Design

29

breakout board in Fig. 2.24. This sensor would be used for measuring the ambient

temperature and relative humidity of the surrounding environment on board the UAV. In

regards to measuring the temperature of the battery’s surface, the team decided to use a

thermocouple amplifier with a K-type thermocouple. The MCP-9600 I2C thermocouple

amplifier was chosen as seen in Fig. 2.25. to fill this role.

Fig. 2.24. Si7021 Breakout Board by SparkFun[21]

Fig. 2.25. MCP-9600 Thermocouple Amplifier Breakout Board by Adafruit[22]

Once the two sensors were chosen, the team had a decision to make regarding

what kind of microcontroller to use to control the peripheral components on the board. A

design based on the open-source Arduino microcontroller could have been easily done,

decreasing complexity and compatibility issues. However, the electrical team decided to

use an industrial microcontroller as the brain of the board to gain experience with these

chips. This decision made the design process much more challenging due to the limited

resources available compared to Arduino. However, the team believed that the experience

would be worthwhile and very beneficial for any of the team member’s future careers in

the engineering field. With this in mind, the team decided to use a STMicroelectronics

microcontroller. Two of the electrical team members had past experience using

STMicroelectronics products which influenced the decision to use the brand. The team

MVNU Senior Design

30

also had direct access to STMicroelectronics prototyping boards in the STORM Lab

which saved us from having to buy a prototyping board for the software design phase.

Once the breakout boards for the necessary sensors were received in the mail, the

electrical team began the software design phase by connecting the STMicroelectronics

Nucleo-L476RG MCU board to the sensors using a small breadboard and multiple

jumper wires as seen in Fig. 2.26. The code that was written to read from the two sensors

was written in C language and I2C communication protocol was used for data retrieval

and transmission. The team had to learn how the I2C driver worked on

STMicroelectronics’ Cube Integrated Development Environment (IDE) to be able to

successfully read data from the sensors. The learning process was very beneficial, but

took time in the initial portion of the design process. Once the code was successfully

written, the data could be displayed on a serial monitor to confirm proper operation as

seen in Fig. 2.27.

Fig. 2.26. Custom PCB Prototype

MVNU Senior Design

31

Fig. 2.27. Sensor Data Displayed on Serial Monitor

 After the code was written for reading sensor data, a plan was created to transmit

the data to be viewable by the user. The initial thought was to save all of the data onto an

onboard SD card while also connecting the PCB to the flight controller so that signals

could be sent to the pilot if the temperature of the battery exceeded the maximum

threshold. Leaning toward this option, the team initiated the board design phase on

EAGLE CAD. Throughout the board design phase, there were several obstacles that were

faced. Firstly, the current electrical component shortage that has been present around the

world for the past couple years severely impacted the progress within this phase. It was

found that the MCP-9600 thermocouple amplifier chip was no longer available on any

trusted supplier’s website. The team had to return to the drawing board to find a

component that would fulfill the battery temperature monitoring role. Eventually the

MAX31855 SPI thermocouple amplifier was chosen as seen in Fig. 2.28. This

thermocouple amplifier offered the same functionality as the MCP-9600, except for the

use of a different communication protocol. The MAX31855 used SPI rather than I2C.

This difference forced the team to learn how to successfully use the SPI driver on the

Cube IDE. Again, the learning and experience involved with this change was very

beneficial, but it delayed the design process. Once the software was written for the

MAX31855, the board design phase resumed. The final rendition of the software for the

prototype can be found in the Appendices section of this report.

MVNU Senior Design

32

Fig. 2.28. MAX31855 Thermocouple Breakout Board by Adafruit[23]

 Once the board was designed, the design underwent a series of revisions. The

board had to be revised for multiple component substitutions due to JLCPCB’s

component stock being limited. JLCPCB was the circuit board fabrication company

selected to fabricate the custom boards. After final revisions were made, the EAGLE

design files were submitted into JLCPCB’s website for fabrication. The following figures

display the schematic, board layout, and JLCPCB rendering respectively.

MVNU Senior Design

33

Fig. 2.29. Custom PCB Schematic Page 1

Fig. 2.30. Custom PCB Schematic Page 2

MVNU Senior Design

34

Fig. 2.31. Custom PCB Board Layout

Fig. 2.32. Custom PCB JLC PCB Rendering (Top)

Fig. 2.33. Custom PCB JLC PCB Rendering (Bottom)

MVNU Senior Design

35

 As one may observe, there is a slot for a microSD card to be inserted for data

saving. However, there was not time to finish writing the software necessary to enable

data to be saved on a microSD card. The code for enabling this function proved to be

complex after several attempts at trying to save data, which led to the decision to use the

TX line from the custom PCB to transmit data to the Raspberry Pi board for further

processing. Writing software for enabling the microSD card was placed in the future-

works category. All of the components viewed on the board have been placed in a bill of

material which can be found in the table below.

Table 2.1. Custom PCB Bill of Materials

Comment Designator Footprint

1uF C1,C2 CPOL-US153CLV-0405

100nF C3,C4 C-USC1206

4.7uF C5 C-USC1206

10nF C6 C-USC1206

0.1uF C7,C8 C-USC1206

15K R5,R6 R0603

2508056017Y2 FB1,FB2 2508056017Y2

ADP121-AUJZ33R7 IC1 ADP121-AUJZ33R7

STM32F030F4P6TR IC2 STM32F030F4P6TR

CD74HC4050M96 IC3 CD74HC4050M96

MAX31855KASA+T IC4 MAX31855KASA+T

5-102203-9 J1 5-102203-9

1729128 J2 1729128

503398-1892 J3 503398-1892

GREEN LED1 LEDCHIPLED-0603-TTW

MVNU Senior Design

36

RED LED2 LEDCHIPLED-0603-TTW

210 R1 R-US_R0805

1k R2 R-US_R0805

MA04-1 SV1 MA04-1

Once the custom board was received in the mail, the team began the final

preparations and testing phase on the board. There were a few components that were not

available in JLCPCB’s stock that were ordered separately through DigiKey. With that

being said, both surface mount and through-hole soldering were performed on the

remaining components. The electrical team had sufficient experience performing

through-hole soldering in the past, but had only observed surface mount soldering. Thus,

another very beneficial learning experience was obtained after successfully soldering all

of the components. The procedure taken for surface mount soldering the components is as

follows:

1. Spread solder paste on the bare pads on the board where each component will be

placed.

2. Place each component onto their respective pads with tweezers.

3. Place board onto heated bed to begin solder reflow process. See Fig. 2.34 and Fig.

2.35. Use an infrared thermometer to observe the temperature of the pads during

the process.

4. Once the reflow process is complete, remove the board from the heated bed to

cool the board to room temperature.

MVNU Senior Design

37

Fig. 2.34. Reflow Process[24]

Fig. 2.35. Performing Reflow Process with Heated Bed

 After surface mount soldering was complete, the team began to test the

connections with a multimeter. The final PCB can be found as Fig. 2.36. Once all

MVNU Senior Design

38

connections were confirmed with the schematic, the board was to an ST-Link debugger

as seen in Fig. 2.37. The debugger was used in an attempt to flash the software to the

board. However, the team faced another obstacle during this phase. While trying to flash

the software to the board, a connection error would occur between the debugger and the

PCB. After doing some research on the error, the team realized that the VDDA pin on the

microcontroller shown in Fig. 2.38 must be connected to VDD (+3.3V) in order for

software to be flashed to the board. It is believed that this connection was not made in the

design, causing the issue.

Fig. 2.36. Final Custom PCB

MVNU Senior Design

39

Fig. 2.37. Custom PCB with ST-Link V2 Debugger

Fig. 2.38. VDDA Pin on Schematic Page 1

 After an attempt to connect the VDDA pin to the VDD node by hand soldering it

to a GPIO pin that was connected to VDD, it was realized that a direct connection was

needed to VDD. The electrical team then acquired one of the extra custom PCBs sent

from JLCPCB and restarted the soldering process. Once the second PCB had been

MVNU Senior Design

40

soldered, one of the electrical team members successfully soldered a single strand of

copper wire to the VDDA pin to be connected to VDD. The connection can be seen in

Fig. 2.39 and 2.40.

Fig. 2.39. Solder Connection to VDDA

Fig. 2.40. Solder Connection to VDDA under Microscope

MVNU Senior Design

41

 After the connection was made between VDD and VDDA, the team then

connected the board to a DC power supply and the debugger on the STMicroelectronics

Nucleo-L476RG board used for prototyping. The team then tried to flash software to the

board again. This time around, the attempt was successful, which proved the suspicion

with the VDDA pin. The setup for successful flashing can be found in Fig. 2.41.

Fig. 2.41. Software Flashing Setup

Although the team was successful at flashing software to the board, another issue

arose. The microcontroller onboard the PCB did not offer enough flash memory to handle

the hardware abstraction layer (HAL) drivers for the I2C and SPI communication

protocols. Therefore, the sensor data could not be read. Thus, the root cause was the

incorrect selection of a microcontroller for this application. However, after discussing a

solution, the team decided to make use of the breakout boards that were used in the

prototyping phase. The team shifted the battery temperature monitoring capabilities to the

Raspberry Pi board since the Raspberry Pi had the bandwidth and pinouts available to

add this function with ease.

MVNU Senior Design

42

 In conclusion, the custom PCB had come a long way throughout the year. There

were several setbacks and errors that arose, but for every error, the team found a solution.

Looking ahead, in order for the PCB to function as it did in the prototyping phase a few

adjustments have to be made. Firstly, software will need to be successfully written to

enable use of a microSD card. Secondly, a new microcontroller will need to be selected

that has at least 32KB of flash memory and the VDDA pin must be connected to the

VDD node. Lastly, the electrical team recommended adding more through-holes for a

row of male header pins so that more GPIO pins can be used if more functionality is

developed within the software. Although the team was not able to implement the board

into the UAV, a fully functional custom PCB was almost made. The experience that was

gained in writing software for various sensors using an industrial microcontroller, surface

mount soldering, circuit board design, and electronics troubleshooting was very

beneficial to the growth of the electrical team as inexperienced engineers.

 As mentioned previously, the second custom design that the electrical team

worked on was a handheld weather station. The weather station was designed to measure

temperature, relative humidity, and wind speed. It was also designed to be compact for

easy handling. The team used an Arduino Nano as the brain of the weather station

system. Along with the Nano, the Sparkfun Si7021 breakout board was used to measure

temperature and relative humidity, and an anemometer from Adafruit was used to

measure wind speed. The system is powered by a 2-cell LiPo battery and the sensor data

is displayed on an OLED display. The user has the option to read temperature in degrees

Fahrenheit and degrees Celsius as well as wind speed in meters per second (m/s),

kilometers per hour (km/h), knots, and miles per hour (mph). Each unit can be read by

turning the knob on a potentiometer. The wiring diagram for the device can be found as

Fig. 2.42. The small black sensor in the wiring diagram represents the anemometer.

MVNU Senior Design

43

Fig. 2.42. Handheld Weather Station Wiring Diagram

Once a plan was initially developed for the weather station, the components,

excluding the anemometer, were connected to a breadboard for the software design

phase. The written code can be found in the Appendices Section of this report.

After the Arduino code was written, the components were moved to perfboard

and connected using through-hole soldering techniques. The initial connections on the

perfboard can be found in Fig. 2.43.

Fig. 2.43. Weather Station Perfboard Setup

MVNU Senior Design

44

 In parallel with making the solder connections on perfboard, a design was started

for the housing for the electrical components on Autodesk Inventor. The designed case

and lid can be found in Fig. 2.44 and 2.45. The team made sure to limit the dimensions of

the case to ensure a compact design that can be carried easily in one hand. Once the

design of the housing was complete, a 3D printer was used to print the case and lid with

PLA filament.

Fig. 2.44. Weather Station Case

Fig. 2.45. Weather Station Lid

MVNU Senior Design

45

 Once the case and lid were printed, the parts were sanded down to ensure that the

components would fit properly. The perfboard containing the Nano and supporting

components were then placed into the housing along with a power switch for easy battery

saving capabilities. The components within the case can be found in Fig. 2.46. Before

completing the final touches on the weather station, the accuracy of the anemometer had

to be tested. The anemometer was tested by holding it out of the window of one of the

team member’s cars and comparing the wind speed data to the reading on the

speedometer. The team ensured the series of tests were performed on very calm days with

little to no wind. After performing the test four times and making changes to the wind

speed conversion formula embedded in the Arduino code, the team successfully

calibrated the anemometer data to the speedometer data. The wind speed data is +/-

2mph off when the wind speed is below 30 mph and is +/- 5 mph off when wind speeds

exceed 30 mph. Once the series of wind speed tests were complete, a transparent plastic

cover was placed over the OLED display and the finishing touches were made to the

physical design. The final weather station can be found in Fig. 2.47. The same process

was repeated for the assembly of the second weather station. The second weather station

contains all of the components except for the anemometer.

MVNU Senior Design

46

Fig. 2.46. Inside of Weather Station Case

MVNU Senior Design

47

Fig. 2.47. Weather Station (Full Assembly)

2.2 Imagery Team
Crop Analysis

The main task for the UAV is to acquire information on the health of crops. The

imagery team has focused on this requirement by first examining how crop analysis

works. Normalized Difference Vegetation Index (NDVI) is the most common method for

analyzing plant health and other important characteristics for evaluating overall crop

health. Other similar indices such as GNDVI (Green-Normalized Difference Vegetation

Index), OSAVI (Optimized Soil Adjusted Vegetation Index), and NDRE (Normalized

Difference Red-Edge) can be used to evaluate plant health in a variety of conditions and

soil quality. These indices are all based upon the principle that healthy vegetation absorbs

more visible light and reflects more near-infrared (NIR) light.[25] NDVI is calculated by

taking the difference between the NIR and red reflectance values of an area and dividing

it by their sum.

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅)

 (Eq. 2.6)

This produces a value between -1 and 1, with higher values indicating more

healthy and vigorous vegetation. The analysis of the crops can provide valuable

information to farmers about weak areas in their field, stressed crops, and pre and post

comparisons for pesticide treatments. Each index requires acquisition of specific

wavelengths of light for accurate calculations. For example, NDVI requires wavelengths

of light at 670 nm (deep red in visible spectrum) and 800 nm (NIR region). Therefore, a

camera system must be developed that is sensitive to both visible and NIR wavelengths in

the electromagnetic spectrum.

Camera System

The first stage was to determine the most accurate and feasible system that could

capture the necessary wavelengths of light needed for NDVI analysis. An options

analysis approach was taken to resolve any ambiguity between the caveats of each

system. A broad approach can be seen in Table 2.2, where four systems were established

MVNU Senior Design

48

and compared on the merits of NDVI accuracy, price, complexity, post-processing

workload, general advantages, and drawbacks. In this table, a “Full Spectrum” camera

refers to a camera that has the built in IR filter removed, therefore having unrestricted

access to all wavelengths of light, hence the name. Furthermore, a single camera with a

filter switch is a full spectrum camera with a filter switching mechanism. The filter

mechanism would start with an IR pass filter, travel across the field and take all pictures,

then come back to the same starting point. At this point, the filter would be switched to

an IR block filter and RGB photos would be taken. This method would require twice the

in-air flight time and increase battery usage, but only require one camera to be purchased.

Digital cameras are intrinsically sensitive to infrared wavelengths, which would

interfere with normal RGB photography by confusing autofocus calculations or softening

the image.[26] Softening of the image occurs since IR is refracted less compared to RGB

wavelengths, which creates a non-perfect overlap of channels. Modern cameras come

with a Bayer filter, which divides the photosensors into red, green, and blue regions.

Since the Bayer filters in most digital cameras absorb a fraction of the infrared light,

these cameras are sometimes not as sensitive as dedicated infrared cameras. To prevent

issues, most digital cameras possess an IR-cut filter to prevent wavelengths greater than

650-700 nm from reaching the sensor. In this case, a Quad Bayer Coding (QBC) color

filter exists on the Arducam 64MP camera. Quad Bayer Coding uses a RGGB Filter

(Red, Green, Green, Blue). The IR sensitivity of this system is high, but some IR is

absorbed by the filter. Beyond 850 nm, no color will be observed, prior to that, false color

may be applied to IR wavelengths around 700 nm. It is essential to remove IR

interference within RGB images, as IR data will oversaturate reds, leading to color

degradation.

MVNU Senior Design

49

Table 2.2. Camera Systems Options Analysis

To better visualize this data, a spider/radar chart was constructed to compare the

advantageous characteristics of each system (Fig. 2.48).

Fig. 2.48. Spider Chart of Camera System Options Analysis

MVNU Senior Design

50

The group prioritized the importance of data accuracy compared to the other

features due to the nature of the project. The goal of the UAV is to assess plant health;

therefore it is of paramount value to receive accurate data, otherwise the entire project

fails with respect to the overall objective. Consequently, the team has concluded that a

dual-camera system will suit the project’s aim most effectively, at the cost of pricing. The

system will consist of a dedicated RGB capable of capturing wavelengths up to ~ 700

nm. The optimal wavelength for NDVI calculation is 650 ± 10 nm. Therefore a 700 nm

IR-Cut filter (blocks all spectral emissions that have a wavelength greater than 700 nm),

will sufficiently acquire the required red spectrum. The other camera will be identical in

composition to the RGB camera, except that the IR-Cut filter will be replaced with an IR

pass filter. An IR pass filter, otherwise known as an IR bandpass, blocks all visible light

and all emissions less than 720 nm. The optimal wavelength for NDVI calculation for the

IR portion is 770±15 nm. A schematic of the system can be seen in Fig. 2.49.

Fig. 2.49. Dual Camera System and Image Merging (RGB, IR, and NDVI

images).[27]

MVNU Senior Design

51

A two-camera system is more desirable compared to a single camera because it

allows for more accurate and precise measurements. A two-camera system can capture

more data points (full resolution is devoted to either RGB and NIR, whereas a single

camera would have to split resolution). With a proposed camera system determined, it

was now possible to choose a camera that is capable of capturing the respective RGB and

IR fields while achieving adequate resolution. When it came to comparing cameras,

features that were taken into consideration were picture quality, size, weight, and price.

The deciding feature regarded the presence of IR-cut filters. Prior to Spring 2023, there

were no camera options that left out IR-cut filters, meaning that a disassembly of the

cameras would be conducted to remove the built in filters. However, Raspberry Pi

released their 12MP camera module 3 with the option to leave out the built in IR filter in

February. This quickly became the best option for the dual camera system because no

meticulous disassembly would be needed, which has a high probability to damage the

camera sensors. With a reasonable price and size, the last thing to check was the

resolution capabilities. Table 2.3 indicates the resolution calculations of the NoIR 12MP

camera.

Table 2.3. Calculations and Properties for NoIR 12MP Module 3 (Wide).

NoIR 12 MP (Wide)

Alt (ft) Field Width (ft) Picture Area (ft2) Camera Specs

100 246.98 232389.37

Resolution Width

(Pixels) 4608

200 493.96 929557.50

Resolution Height

(Pixels) 2592

300 740.94 2091504.36 FOV Wide (degrees) 102

400 987.92 3718229.98 FOV Vertical (degrees) 67

Alt (ft) Field Height (ft)

Pixel Density

(pixels/ft2)

100 940.93 458.24

MVNU Senior Design

52

NoIR 12 MP (Wide)

Alt (ft) Field Width (ft) Picture Area (ft2) Camera Specs

100 246.98 232389.37

Resolution Width

(Pixels) 4608

200 1881.85 114.56

300 2822.78 50.92

400 3763.70 28.64

The math for pixel density calculations comes from a governing equation of the

project, given below.

𝜑𝜑𝑝𝑝 = ℎ𝑝𝑝
2+𝑤𝑤𝑝𝑝2

4𝑑𝑑2𝑡𝑡𝑡𝑡𝑡𝑡2(1
2𝛼𝛼)

 (Eq. 2.7)

where 𝜑𝜑𝑝𝑝 is pixel density, h is number of vertical pixels, w is number of

horizontal pixels, d is altitude, and ⍺ is angle of view. Numbers of pixels vertically and

horizontally along with angle of view are all given specs of the camera. Pixel density is

necessary to know so that images can be captured with enough detail to allow for proper

spectral analysis. From the pixel density column in Table 2.3, it is clear that this camera

exceeds the minimum of 1 pixel per square foot by a large margin, especially at the

expected operating altitudes (~200 ft). This camera also comes with autofocus, making it

convenient for the user to not have to worry about manual focus given different flying

altitudes.

With the resolution requirement met and the ease of the camera to be

implemented into the exterior filtered dual system, the NoIR 12MP camera module was

the definite choice. The camera is full-spectrum with no filter, meaning the team can

control which light wavelengths are captured based on the exterior filter selections.

Spectral Analysis

 A theoretical spectral analysis was conducted using the manufacturer provided

transmissivity of the respective filter. These results were compiled into a graph (Fig.

2.50) and plotted transmission percentage versus wavelength in nanometers.

MVNU Senior Design

53

 Fig. 2.50. Theoretical Spectral Analysis of Dual Camera System.[28]

Various crop vegetation indices are labeled and the required wavelengths

necessary for its respective calculations are color coordinated. The proposed camera

system and filters cover the necessary wavelengths needed for all common indices. A

small gap is present around 700-720 nm due to the necessity for a margin of error

between the two cameras. If both cameras are capturing the same wavelength, in post-

processing, that data will be stacked and amplified, which will make that specific

wavelength appear stronger compared to the others.

Each curve in the spectral graph represents the spectral power distribution (SPD)

of the colors present in the cropped image. The SPD is a measure of the relative power of

light at different wavelengths that is emitted, transmitted, or reflected by a light source or

surface. In the context of the RGB image, the SPD represents the relative amount of red,

green, and blue light that is present in the image at each wavelength. The resulting graph

shows how the relative intensities of light change across the visible spectrum, with peaks

indicating which wavelengths are more strongly represented in the image. In the program,

RGB to XYZ tristimulus conversion is performed in order to convert an RGB image into

MVNU Senior Design

54

a spectral curve. This process involves converting RGB color values into a set of three

tristimulus values (X, Y, and Z) that represent the amount of energy in the red, green, and

blue spectral regions that are perceived by the human eye. The conversion from RGB to

XYZ is necessary because the spectral data needed for the subsequent analysis cannot be

obtained directly from the RGB color space. Instead, the XYZ tristimulus values provide

a basis for calculating the spectral data using CIE color matching functions (in this case,

CIE 1931), which describe the human eye's sensitivity to different wavelengths of light.

Furthermore, normalization of pixel values to the range of 0 to 1 is conducted in

preprocessing in the program. Normalizing the pixel values can help to ensure that the

image data has a consistent range of values across different images, which can be

important for comparing and analyzing images. Additionally, normalization can help to

reduce the impact of variations in lighting or exposure on the image data, making it easier

to extract useful information from the image.

Fig. 2.51. Experimental Spectral Analysis of Dual Camera System.

The NIR region gives an estimate of the intensity of light versus wavelength in

the NIR region, based on the input IR image. However, it is important to note that the

MVNU Senior Design

55

accuracy of the graph depends on the quality of the input image, as well as the accuracy

of the calibration of the camera and amount of available NIR light present in the room.

Additionally, the program assumes that the NIR information is contained in the red

channel of the RGB image, which may not always be the case. In some cases, other color

channels may contain some NIR information, or the NIR information may be contained

in channels outside of the RGB color space. Therefore, the graph generated by the

program can serve as a general indication of the intensity of light versus wavelength in

the NIR region, but for more accurate measurements, it may be necessary to use

specialized equipment designed for NIR imaging, and to perform appropriate calibration

and processing of the data. The intensity of the NIR data may appear to increase at

around 1000 nm due to a phenomenon called "detector saturation". In general, the

intensity of the NIR radiation decreases as the wavelength increases, due to the increasing

energy of the photons at shorter wavelengths. However, at very long wavelengths (above

1000 nm), the intensity may appear to increase again due to the limitations of the detector

used to capture the NIR image. Many detectors have a "saturation limit", which is the

maximum intensity of radiation that the detector can measure before it becomes

saturated, or unable to accurately detect further increases in intensity. This limit may be

reached at longer wavelengths in the NIR region, leading to a plateau or even a slight

increase in the measured intensity.

 The curve present in Fig. 2.51 represents the data present in a cropped image of

electrical wires that has a variety of colors. The variety of colors present allow for

multiple different wavelengths of light to be in the picture. It is important to note that due

to the nature of the material of the wires and availability of light within an artificially lit

room, the wavelengths of light around 680-700 nm is low. Also, XYZ tristimulus color

functions are less sensitive to red wavelengths because human eyes are more sensitive to

blue and green. Therefore, to better suit the reality of what an actual human eye would

see, red is much lower in the spectral analysis. However, data is still present at these

wavelengths, just small amounts. A normalized RGB spectral analysis across each

channel can be seen in Fig. 2.52.

MVNU Senior Design

56

Fig. 2.52. Normalized RGB Spectral Analysis.

 Other than the electrical wires, pictures of vegetation were captured to test

completion and accuracy of the NDVI analysis. With the help of software, the images

taken through both the IR-pass filter and the IR-cut filter were stitched together. Using

MATLAB, the images were optimized and aligned, then the required data was

extrapolated from the images (Appendix D). Once overlaid, the wavelengths captured in

the photos were analyzed and inserted into Eq. 2.6. Based on the values returned from

this process, the same area where the wavelength was taken from the photo was assigned

a color. The more red the color is, the lower the NDVI value is (minimum of -1). The

more green the color is, the higher the NDVI value (maximum of 1). As described earlier,

the higher NDVI values indicate healthier plants. Thus, in NDVI images, the green areas

show healthier plants while the red areas show unhealthy plants. An example of an NDVI

image analyzed is shown in Fig. 2.53.

MVNU Senior Design

57

Fig. 2.53. NDVI Analysis of Grass at Ariel Park.

 The green areas in Fig. 2.53 indicate areas of healthy grass found at the park. The

dark red areas show either man made objects, such as buildings or roads, or areas of no

vegetation. The in between colors, areas of orange and yellow, show areas of grass that

are unhealthy or stressed. Blue regions are extremities that are caused by reflections and

should be ignored. The original images used in this NDVI image can be seen in Appendix

E. Based on a purely visual observational analysis of the original RGB photo, the NDVI

image appears accurate with regards to plant health. Areas of brownish colored grass

(unhealthy) appear yellow or orange in the NDVI image, which is valuable information.

Shadows cause several inaccuracies in NDVI, as the change in reflectance of the visible

spectrum creates areas of supposed vigor. Therefore, shadowed areas (tree branches, side

of building, ravines) may appear healthier than anticipated. Overall, the camera system

and NDVI analysis tests show accurate evidence in determining the health of vegetation.

Camera Case

 The design and construction of a camera case to house the two NoIR 12MP

cameras and the two filters (IR-Pass and IR-Block) was necessary. The camera case is a

two-piece design of which includes the base with a snap on lid to make assembly simple.

The base has two cylinders serving as viewing ports for the two cameras. The ports are

MVNU Senior Design

58

sized to friction fit the exterior camera filters. Four screw holes exist for each camera to

be secured to the base. The top part of the base includes a slit where a screen protector is

inserted. The lid includes a rim which allows for it to snap onto the base. On top of the lid

sits four pegs to allow for the mounting of the Raspberry Pi. The 3D printed case with its

entire assembly is pictured in Fig. 2.54.

Fig. 2.54. Camera Case Assembly

 Figure 2.54 includes the Raspberry Pi mounted with all components secured in

the case. Considering the vulnerability of the imaging components, damage protection

and moisture control were necessary. A screen protector with 9H hardness was mounted

in front of the camera filters to protect from weather and physical contact. The 9H

hardness falls on the Mohs hardness scale right below the diamond at 10H, which is one

of the hardest things on earth. Thus, the screen protector will provide sufficient protection

for the imagery components. Silica packets were secured in the case to aid in controlling

moisture from accumulating on the filters and lenses. The case was also sealed with

silicone paste in order to minimize exposure to outside elements. This case is inserted

into the belly of the UAV, where a hole was cut out for the cameras to view the ground

below.

MVNU Senior Design

59

Lessons Learned

Prototyping included the deconstruction of an Arducam 64MP camera module,

which was the camera selection chosen at the end of the fall semester. It was proven

difficult to disassemble and reassemble the camera without damaging its sensor. It was

thought that with better tooling and a controlled atmosphere from something such as a

clean box, that the disassembly of the camera filters could be successful. After multiple

test runs and real runs, it was still evident that the removal of the camera filter could not

be done with a high chance of success. Thus, another camera option was selected. The

team learned that camera sensors are extremely sensitive and that it takes meticulous care

to work on small scale imaging components.

2.3 Design and Manufacturing Team
 The main goals for the design and manufacturing team were firstly to select a

motor for the prototype and final UAV, secondly to set up a working prototype for testing

the internal components, and thirdly to design and manufacture a fully custom UAV

body.

Motor Selection & Testing

 Selecting the correct motor and propeller was a key step in the process of building

a functional UAV. The motor selection was based on the weight of the prototype and the

estimated future weight of the final UAV. The goal was to obtain a thrust to weight ratio

of over 1. This is to ensure the motor has enough thrust to lift the plane from takeoff.

Once the UAV is at its intended altitude the required thrust will be significantly less as

the UAV will be able to essentially glide as it follows its set path. The final motor

selection was the Cobra C-2814/16. The motor specs can be seen in Table 2.4. The

propeller and ESC were chosen based on the recommended data from the motor

manufacturer. Cobra provided a table of propeller options based on the input voltage. The

team selected the propeller recommended with the largest estimated thrust output when

paired with the motor.The selected ESC was a 33A Cobra ESC. The selected propeller

was an APC 9x4.5E and the propeller specifications with the combination of a 4-cell

LiPo battery along with the C-2814/16 motor can be seen in Table 2.5.

MVNU Senior Design

60

Table 2.4. Motor specifications[29]

Motor Weight
Outside

Diameter

RPM Per

Volt

Max

Continuous

Current

Max

Power

(4-Cell)

Motor

Wind

Max

Efficiency

C-

2814/16

109 g 35 mm 1050 30 amps 450

Watts

16 Turn

Delta

89%

Table 2.5. Propellor specifications[29]

Size
Input

Voltage
RPM Pitch Speed Thrust

Thrust

Efficiency

9x4.5E 14.8 V 12,262 52.3 1,567 g 4.54 g/W

After deciding on the motor and propeller, it was desirable to test the combination

ourselves to determine the amount of thrust the motor could produce. The thrust was

tested by creating an apparatus to hold the motor in a vertical position while sitting on a

scale. The scale was zeroed with the motor apparatus sitting on it so any thrust produced

from the motor could be measured. The testing apparatus can be seen in Fig. 2.55. Using

the battery and controller, power was applied to the motor until a specific current draw to

the motor was achieved. Starting at 5% of the max rated current of 26 A, the thrust was

tested in intervals of 5% until 30% was reached. Due to most of the flight being below

the 30% thrust level the test was given this upper limit. The data for the thrust test can be

seen in Table 2.6. From the thrust test, it was found that the motor and propeller

combination was actually producing more thrust than initially expected based on the data

from the Cobra website. This will allow the UAV to achieve a larger thrust to weight

ratio than expected which means there is a safety margin in case any extra weight needs

added to the UAV.

MVNU Senior Design

61

Fig. 2.55. Thrust Test Apparatus

Table 2.6. Thrust Test Data

% of Max Rated

Current
Current Draw (A) Voltage (V) Thrust (g)

5 1.3 2.44 84

10 2.59 3.78 182

15 3.95 5.02 322

20 5.28 5.93 450

25 6.49 6.4 520

30 7.84 7.36 674

Initial Prototype

 In order to test the electronics and software components of the UAV before the

final body was built, it was decided to purchase a foam plane body to use in the

meantime. The body selected was a X-UAV Mini Talon which can be seen in Fig. 2.56.

MVNU Senior Design

62

Fig. 2.56. X-UAV MiniTalon[30]

This plane body is made out of EPO (Expanded Polyolefin) which makes it light and

durable. The plane hull is also large enough to allow room for all the electrical

equipment. After calibrating all of the servos and installing all of the needed hardware the

team was ready for the test flight. During the first flight the plane was working properly

along with all of the components until around 15 minutes into the flight the plane began

losing communication. It is believed to be caused by the removable cover on the hull,

which allows access into the compartment where all the electronics are located. Wires

most likely came loose from too much airflow in the compartment. Eventually this

caused a disruption in communication and the plane plummeted downward into the

ground. Luckily, the foam body took most of the damage and all of the electronics and

the battery remained in good condition. Pictures of the remains can be seen in Fig. 2.57.

MVNU Senior Design

63

Fig. 2.57. Test Plane Wreckage

Wing Design

In order to improve the efficiency of the final UAV, the team decided to choose

the team’s own airfoil shape to maximize the efficiency of the wing. This airfoil shape

was used to create the ribs that form the wing. The following airfoils were selected and

compared based on their common use for low-speed aircrafts and their simple designs for

easier simulation and production later in the process. The airfoils compared were the

NACA 1412, 2412, 4412, and 4415.

NACA 1412:

Specifications:

 Max thickness 12% at 29.9% chord

 Max camber 1% at 40% chord[31]

Fig. 2.58. Cross Section of NACA 1412 airfoil[31]

MVNU Senior Design

64

Fig. 2.59. Cl and Cd vs Alpha for 1412[31]

Fig. 2.60. Legend for 1412 Graphs[31]

NACA 2412:

Specifications:

 Max thickness 12% at 30% chord

 Max camber 2% at 40% chord[31]

MVNU Senior Design

65

Fig. 2.61. Cross Section of NACA 2412 airfoil[31]

Fig. 2.62. Cl and Cd vs Alpha for 2412[31]

Fig. 2.63. Legend for 2412 Graphs[31]

NACA 4412:

MVNU Senior Design

66

Specifications:

 Max thickness 12% at 30% chord

 Max camber 4% at 40% chord[31]

Fig. 2.64. Cross Section of NACA 4412 airfoil[31]

Fig. 2.65. Cl and Cd vs Alpha for 4412[31]

MVNU Senior Design

67

Fig. 2.66. Legend for 4412 Graphs[31]

NACA 4415:

Specifications:

 Max thickness 15% at 30.9% chord

 Max camber 4% at 40.2% chord[31]

Fig. 2.67. Cross Section of NACA 4415 airfoil[31]

MVNU Senior Design

68

Fig. 2.68. Cl and Cd vs Alpha for 4415[31]

Fig. 2.69. Legend for 4415 Graphs[31]

Cl and Cd are plotted versus alpha for each airfoil cross section listed above.

Alpha in this case is the angle of attack of the airfoil. The angle of attack is the angle

where the relative wind meets the airfoil. This angle is formed by the chord of the airfoil

and the vector of the relative wind. An illustration of this can be seen below in Fig. 2.70.

MVNU Senior Design

69

Fig. 2.70. Angle of Attack[32]

During a typical flight, once up in the air, the typical angle of attack for an airfoil is

around 3 to 5 degrees. When flying at lower speeds this can safely go up to around 10

degrees. Using this information, a range of 0 to 10 degrees for alpha was used to compare

the lift and drag coefficients on the airfoils. Another factor used in the comparison is the

critical angle of attack, or otherwise known as stall angle. This is the angle that creates

the largest lift coefficient. If the angle of attack is larger than the critical angle then the

lift force begins to decrease, and the plane will eventually stall. The final comparison data

between the airfoils can be seen below in Fig. 2.71.

MVNU Senior Design

70

Fig. 2.71. Airfoil Comparison Data[31]

 Based on the data, it was decided to select the NACA 4412 as the profile of the

wings for the final prototype. The 4412 profile was determined to have the best

hypothetical efficiency based on the lift and drag coefficient data provided. The 4412

airfoil was also a very common profile for low-speed gliders and aircraft such as to be

designed by the team.

 After selecting the airfoil and the wing was designed, with help from the software

team, a CFD analysis was completed on the wings. The CFD simulation was completed

using the autodesk CFD software. A picture of the simulation along with the data can be

seen in Fig. 2.72 and 2.73. Looking at the data, the Fx force is negligible, the Fy force is

the lift force, and the Fz force is the drag force. Taking the Fy/Fz gives the lift/drag

coefficient for the wing. The analysis was done for 30, 40, and 50 miles per hour.

Fig. 2.72. CFD Simulation

Fig. 2.73. CFD Analysis Data

MVNU Senior Design

71

Final UAV Design

 The initial UAV design was based off of some of the elements of the Mini Talon

test plane. It was desirable to build a plane with similar sizes and proportions in order to

make sure the motor would work with the final design as well. A similar size was also

ideal due to the ability of the plane to be transported easily. The goal was to design and

build a UAV that could be easily disassembled and transported to wherever it is needed,

whether that was by car or in some type of pack being carried by hand. The original

design sketches were drawn on paper to understand the ideal shape and size of the body

that would reach further design iterations. Some of the initial sketches can be seen in Fig.

2.74.

Fig. 2.74. Initial Design Sketches

The next step was drawing the rib profiles on Fusion 360. These ribs will be the main

foundation of the wings and hull. As stated above, the ribs of the wings have the profile

of the NACA 4412 airfoil. The wings taper down towards the outside edge of the plane to

increase the efficiency by decreasing the drag force. The 3D CAD model of the wing and

hull can be seen in Fig. 2.75.

MVNU Senior Design

72

Fig. 2.75. Wing and Hull CAD Design

Once the CAD designs were finished, the process of cutting out the wing ribs and the hull

ribs began. These were cut out of oak 1/8” laminate and 1/8” balsa wood depending on

which parts needed to be more structurally sound. All of the wing and hull ribs were cut

out using the 60-watt laser. The wing ribs were glued in place using super glue along

predetermined spots on carbon fiber rods. The carbon fiber rods were used as the

structure of the wings for stability and strength. The hull ribs were held together using

oak square rods. The ribs were again glued to the rods in predetermined places to create

the structure. The ailerons of the wings were also made using balsa wood ribs cut by the

laser. The ribs were placed and glued along a metal rod which will act as a pivot for the

ailerons. The ailerons were covered using a polystyrene sheet that was heated and

wrapped around the ribs to provide a smooth and strong covering. The wings and hull can

be seen in Fig. 2.76 along with the finished skeleton in Fig. 2.77.

Fig. 2.76. Hull and Wing

MVNU Senior Design

73

Fig. 2.77. Completed UAV Skeleton

The nosepiece of the hull was designed on Fusion 360 and 3D printed. There are two

openings in the nosepiece to allow for air to flow through the inside of the hull in order to

keep the electrical components and the battery cool during flights in the tropical climate.

The wings were designed to be detachable when transporting the UAV. After completing

the skeletal structure of the UAV, it was wrapped with foam sheets. Scoring one side of

the sheet allows it to be bent around the outside of the frame. The completed UAV can be

seen in Fig. 2.78.

MVNU Senior Design

74

Fig. 2.78. Completed UAV

2.4 Software Team
Deliverables

Software team’s deliverables were to create a system that collects photographical

data from the terrain below the plane, stores that data on a storage media, and source

software that processes all obtained data off-board of the drone. In order to achieve these

goals, the software team worked backwards to find a solution.

Software Selection and Initial Testing

Soon after the start of the project, Open Drone Maps (ODM) was selected as the

software suite to process the imagery data. It was chosen in October of 2022 due to its

versatility and open-source code. As the client requested many different vegetation

indexes (VI), it was decided that a software that can be programmed for any current or

future index would be ideal. Further, ODM, unlike its paid competitors, has no monthly

subscription cost to use the software. Instead, a paid Windows installer–included in the

bill of materials (BOM)–is a one-time fee. Further, ODM has its Lightning Network that

allows users to upload their imagery and pay servers to process the data remotely for a

small fee. This allows for data processing when hardware requirements are too high for

some jobs.

ODM requires the following to operate: a processing server and imagery data. For

the server, the minimum amount of random-access memory (RAM) is proportional to the

number of photos that must be stitched together. This requirement can be found in Table

2.7 below.

Table 2.7. Open Drone Maps Requirements[33]

Number of images RAM or RAM + Swap

40 4

250 16

MVNU Senior Design

75

500 32

1500 64

2500 128

3500 192

5000 256

Essentially, ODM operates by stitching photographs together using interpolation

algorithms. As such, there is an ideal amount of overlap between photos as it stitches

them together. Based on the research done by the software team, this was found to be a

68% overlap and sidelap, making each photo share 83% of its area with its neighbors.[34]

As the Imagery Team calculated in Table 2.7, the cameras are capable of taking a photo

of about 21 acres at 200 feet.

MVNU Senior Design

76

Fig. 2.79. Diagram of aerial photography passes[35]

As such, the Software Team found that it would be necessary to derive a list of

basic, governing equations for the project. These can be found in the Appendix F. These

equations proved to be very important to the collective work between imager and

software team to create an image-taking system that met the specifications given by the

client and by the ODM software suite. Equations that were especially helpful include

Appendix F: Equations 1-1 and 1-7 that can be used to find the pixel density at a given

altitude based on the camera module specifications and find the necessary time between

photos, respectively. This proved essential to ensure the photo-taking module would

shoot a photo with the right distance between takes, allowing for proper image stitching

later.

ODM can read metadata in the exchangeable image file format (EXIF). In order

to get higher quality results, the following metadata is used: ODM was originally tested

with some images donated by a local drone enthusiast for the project’s research. These

photos were stitched and created the following mosaic from over 200 images. Fig. 2.80

shows the mosaic in the visible light spectrum and Fig. 2.81 for the normalized difference

vegetative index as described in section 2.2.

MVNU Senior Design

77

Fig. 2.80. Red Green Blue (RGB) Orthomosaic

MVNU Senior Design

78

Fig. 2.81. Normalized Difference Vegetation Index (NDVI) Orthomosaic

ODM also self-generates a report of the image quality and accuracy of the

interpretation. An example report of this can be found in Appendix H. ODM further can

create very realistic 3D models if enough photos are taken. This can be seen in Fig. 2.82

and Fig. 2.83 below.

MVNU Senior Design

79

Fig. 2.82. 3D render of data

Fig. 2.83. Closeup of 3D render of data

Remote Technical Support and Updating

In order to provide technical support to the client remotely, the following was

used: a virtual private network (VPN), secure socket layer (SSL) tunnels, and remote

MVNU Senior Design

80

desktop protocol (RDP). VPNs allow for the secure usage of a local area network (LAN)

remotely. This allows for one to tunnel their traffic through an encrypted exchange to a

server and act like the client is in the same LAN as the server. For the case-use in this

project, the computer that was configured for the drone client contains a VPN

configuration that sends its traffic to a server managed by the university. This means that

the devices will show up on the LAN at the university as a local network device. Thus, a

student would be able to login to the device remotely with proper credentials, essentially

creating a reverse VPN tunnel. In order to control the configured device, the

preconfigured laptop was set to enable RDP serving within Windows 11. This allows a

student to provide technical help to the client remotely. Further, in order to be able to

apply updates to the camera-taking module, a Cloudflare-based SSL tunnel was created

that allows for the use of the secure-shell protocol (SSH) to remotely update and serve

files to the photo-taking module’s SBC. If for some reason, the system image becomes

corrupted on the SBC, the Secure Digital (SD) card is accessible from the top of the

drone, next to the universal serial bus (USB) drive that stores the photo data. All the

client has to do to enable the remote features for the SBC is to create a hotspot or wireless

access point with a username and password that is known by the client of the project, and

the SBC will automatically connect if it has power, allowing for remote control. For more

information regarding these protocols, see Appendix G. As can be seen in the report,

camera module correction factors can be found. This correction is essential because of the

wide-angle camera used in this UAV, as distortion from the bubble lens at the edges of its

view can cause systematic deviation in the images.

GPS Testing

The project’s client was unsure of the global position system (GPS) satellite

fixing in their region of interest. Due to this, the software team readily designed,

prototyped, and tested a GPS tracker that logs the quality of the signal. Below is Fig.

2.84, a photo of the completed peg-board prototype that was sent to the client’s region of

interest.

MVNU Senior Design

81

Fig. 2.84. Photo of the Completed Protoboard

The prototype uses a Seeed microcontroller with a Raspberry Pi Pico processor, a

microSD card reader, and a GPS module. Power is received from a standard external

battery cable and interfaces with the microcontroller’s built-in USB-C port. The GPS

communicates to the microcontroller via universal asynchronous receiver-transmitter

(UART) protocol, and the SD card module utilizes a serial-parallel interface (SPI). The

breadboard diagram and micropython code for the unit can be found in Appendix I.

Appendix J shows renders of the completed case and Appendix K shows some of the

collected data. The client was given a set of instructions to use the device, this can be

found in Appendix L. As can be seen from the raw GPS data, the device obtained a fix

from 14 different satellites. This is more than enough for very accurate GPS data. The

data was mapped using a keyhole markup language file format and imported into Google

Earth. The result of this is shown in Fig. 2.85 below.

MVNU Senior Design

82

Fig. 2.85. Mapped journey from GPS data

As can be seen in the figure, the data collection has no issues with being accurate

for the latitude and longitude. However, after extensive data analysis, it was found that

while the coordinate data was accurate to within 10 feet, the altitude data could vary

between less than 10 and over 100 feet. Thus, it was concluded that GPS data could not

be used to reliably determine absolute altitude.

Single Board Computer and Camera Hardware Selection

To run the camera modules chosen for this project, the Raspberry Pi Camera V3,

a device with two camera serial interfaces (CSIs) would be needed. The original choice

was a Raspberry Pi (RPI) compute module 4 (CM4). Due to ongoing supply-chain issues,

it was deemed impractical and expensive to obtain the RPI CMs. Instead, an alternative

board was found: the SoQuartz CM. It exceeded the performance of the RPI on paper and

had two CSI lanes, one for each camera. However, even installing an operating system on

the single-board computer (SBC) proved to be surprisingly difficult, as the device is not

well documented. In the end, a modified version of Debian 13 was found to run on the

SBC but the board had trouble with the software drivers needed to run the 64 megapixel

(MP) Arducam modules planned for at the time. In the end, the use of the SoQuartz board

MVNU Senior Design

83

was abandoned. Instead, a member of the software team and a member of the supervising

faculty donated their RPI 4 and 3, respectively, for their permanent incorporation in this

project.

The Raspberry Pi foundation does a very good job at documenting and

standardizing their ARM-based SBC. The pinout between their many models of Pi’s

allow for programs to run on any of their Pi’s. As such, any programs written for the

RPI3 can run on the RPI4 or even CM. This made the software team’s job much easier,

as only one program would have to be written for all the expected devices. (As the

project would ideally use CMs in the future.) Due to the RPI3 and 4 only having one CSI,

the use of a multiplexer was necessary. Thus, the Arducam 4-channel multiplexer was

selected, purchased, and interfaced. It operates by using an I2C interface and general

purpose input-output (GPIO) pins to control which camera module is connected to the

Pi’s CSI. An image of the Arducam can be seen below in Fig. 2.86.

Fig. 2.86. Photo of Arducam 4-channel camera multiplexer[36]

The multiplexer has five CSIs: one to connect to the Pi upstream and four for each

camera, labeled ‘A’, ‘B’, ‘C’, and ‘D’. In order to select a camera, Table 2.8 below

MVNU Senior Design

84

shows the combination of the I2C interface that is selected and the state of the GPIO pins

used. For this implementation of the multiplexer, cameras ‘A’ and ‘C’ were used.

Table 2.8. Pin state for camera module selection

 GPIO Pin Number

Camera 7 11 12 I2C Address

A 0 0 1 0x70 0x00 0x04

B 1 0 1 0x70 0x00 0x05

C 0 1 0 0x70 0x00 0x06

D 1 1 0 0x70 0x00 0x07

The pinout of the standardized 40-pin RPI layout can be seen below in Fig. 2.87.

Fig. 2.87. Diagram of 40-pin Raspberry Pi Pinout[37]

MVNU Senior Design

85

Software Overview and Hardware Interfacing

In order to get higher quality stitching from ODM that uses less resources,

geotagging is necessary. By adding the latitude and longitude to the metadata, in EXIF,

each photo can be directly compared to one another based on geographical location. In

order to add this tag, GPS data must be read, interpreted, and appended to the image

metadata. This is done using the gpsd linux daemon on the Pi. Using cgps, a graphical

interpreter of the daemon, one can easily read out the data from gpsd. An example of

this data can be seen in Fig. 2.88 below.

Fig. 2.88. Cgps Library Testing on Raspberry Pi

The GPS location from the test above was searched and found on Google Maps.

The location can be seen in Fig. 2.89 below. This location was within ten feet of the

antenna during the test.

MVNU Senior Design

86

Fig. 2.89. Location shown by GPS data in test

The GPS module used in this project is the Matek M8Q-5883 as imaged in Fig.

2.90 below. This module has two identical UART and I2C interfaces. This means that the

flight controller and the Pi can both update their GPS location in real-time. For this

module, the I2C is used to update the magnetic compass heading, and the UART pins.

Thus, the Pi only receives data from the UART interface, as the heading is not necessary

for the EXIF tag.

MVNU Senior Design

87

Fig. 2.90. Image of the GPS module

Unfortunately, the RPI 3 and 4 only have one UART or serial interface. Thus, an

adapter is needed to translate the UART data to USB to take advantage of the Pi’s four

USB ports. The wiring for this can be seen in Fig. 2.91 below.

Fig. 2.91. Breadboard wiring for the photo system

Due to the multiplexer covering pins 1-26, jumper wires were soldered to the

multiplexer to allow for 3.3V, 5V, and ground access for the other components. Also

pictured in Fig. 2.91 above is the array of sensors used to monitor the battery temperature

(the MCP9600 module) and the ambient temperature and humidity (SI7021). These

sensors were added to the SBC due to the failure of the custom PCB project undergone

by the electrical team. These modules are used to log temperature and humidity data to be

able to find trends regarding temperature and battery capacity. Pictured in the diagram is

a battery that represents the 5V output of the flight controller. The 5V pin of the RPI is

bidirectional, allowing for the Pi to power other components or itself through pins 2 and

4. The USB attached to the GPS module supplies both power and data transfer. Overall

the power consumption of the system can theoretically reach up to 15 watts under full

load, limited by the flight controller’s current output.

MVNU Senior Design

88

The program that runs the cameras is based on the picamera2 and

libcamera libraries for python. These libraries allow for the capturing of video and

imagery from CSI cameras. This includes resolution, frame rate, exposure, etc. The

program runs as an enabled, persistent service that runs at boot, meaning that the program

is running whenever the Pi receives power. However, photos are not taken until a high

signal is received on pin 36 (GPIO 16). When the high signal is received, photos are

taken, switching alternating between camera A and C (RGB and NIR). The time delay

between photos is determined by finding the distance between photos. This distance is

calculated from Eqs. 1-1 and 2-2 in Appendix F. As it would be ideal to know the relative

altitude above the ground, the program has a parameter that allows for the altering of the

relative altitude. By default, this is 200 feet. Thus, for the Raspberry Pi Camera Module

V3 NoIR Wide Angle with a resolution of 4608x2592 and a field of view of 120 degrees,

the equation to find the distance between photos can be found below in Eq. 2.7 below,

where d is the relative altitude and x is the overlap factor between subsequent photos.

 Photo Distance = 1.6983𝑑𝑑(1 − 𝑥𝑥) (Eq. 2.7)

Thus, by using 200 feet for the altitude and 68% for the overlap factor. Thus, the camera

module will need to take a photo with both cameras every 108.7 feet traverse in the air.

For the program, the capture method is run once the GPS location is greater than 108.7

feet from the location of its previous photo. This ensures that the data has the correct

overlap to allow ODM to run accurately and efficiently. This python program can be seen

in Appendix L. Based on testing, the code is able to take photos fast enough if the UAV

cruises at a speed under 40 miles-per-hour. Photos taken from this program can be seen in

Fig. 2.92 below. Note: these photos were taken while moving. Images were not taken

from exactly the same perspective.

MVNU Senior Design

89

Fig. 2.92. RGB and IR photos

As can be seen from the photos above, a higher content in chlorophyll results in a

higher reflectivity of infrared light coupled with a higher reflectivity of the green

spectrum of visible light.

Software Conclusion

The software is designed for a rolling-release system, as parameters such as

exposure and focal distance will likely need to be tuned according to the client's

intentions in the region of interest. As such, the Pi has the ability to be reprogrammed

remotely as covered previously. It is planned that a member of the team will provide

continued technical support for the project to the client for at least six months. Further, as

two identical drones were created for the client and for the university, any upgrades and

MVNU Senior Design

90

configurations changed on the drone at the university can be implemented by the client

and programmed remotely. This ensures the repeatability and modularity of the UAV.

ODM is a very robust software with many available plugins. As the client explores the

capabilities of the software, it is expected that support will be needed to use ODM

properly as well. In all, the software team has designed, programmed, and implemented a

camera taking module that is mostly independent of the rest of the drone.

As can be seen from the previous subsections, all of the software team’s

deliverables were met as a system that collects photographical data from the terrain

below the plane, stores that data on a storage media, and source software that processes

all obtained data off-board of the drone was created, tested, and implemented.

3 UAV Iterations
3.1 The Goose (Prototype)

The prototype, nicknamed the Goose, was created to test the inner components of

the UAV. The team had decided to buy a prebuilt body in order to see if the components

ordered worked together. The tested components included the flight controller, GPS,

motor, propellers, RC controller, receivers, battery, antennas, and telemetry system. Thus,

all of the components were put into the X-UAV Mini Talon body, the prebuilt body, and

were wired accordingly. The result of this is pictured below.

MVNU Senior Design

91

Fig. 3.1. The Goose

On March 15th, the Goose was taken for a test flight and was successful in flying.

However, one of the problems noticed was that the ailerons did not bend as much as

expected. This caused the Goose to take wide turns as well as not being able to ascend or

descend as quickly as it should have. Fortunately, the flight of the Goose proved that the

inner components used for flight worked together. Thus, the only things left to test were

the custom body of the UAV, the FPV system, and the imagery team’s work.

Unfortunately, after about fifteen minutes of flying the Goose, the fuselage cover

came loose and flew off. This caused wind to get into the inner components of the Goose

and move the wires enough to disconnect one. Due to this, Aaron Aude, who was flying

the Goose, lost control and it ended up crashing. After the Goose had been recovered, it

was found that the X-UAV Mini Talon body was broken, but nothing else was harmed.

This was good news as this body was not the final design: only the internal components

would be transferred to the final hull.

MVNU Senior Design

92

3.2 The Mule (Custom Body)
After the test flight of the Goose, the Design and Manufacturing team finished the

design of the customized wings and hull. These were made of balsa wood with foam over

top of them. The design can be seen below. The design was transferred to the laser

cutting machine that the team had access to. Each of the parts were made and then glued

together to make the skeleton of the Mule, the nickname of the team’s first UAV. This

UAV used the NACA 4412 airfoil and was inspired by the design of the X-UAV Mini

Talon.

Fig. 3.2. The Mule

Unfortunately, the Mule ended up being too heavy to fly. This is due to a

combination of two things. One, after the flight test of the Goose, which ended up

destroying the body, the team wanted the customized hull to be sturdy. This would allow

the UAV to last longer as it could be fixed much easier if it were to crash. However, the

tradeoff for making it sturdy was that it would add weight. Secondly, UAVs must have

their center of gravity in about the middle of the wings. At first, the Mule was back-

heavy. This caused the team to add weight to the front to balance it out. The team ended

up adding about 700 grams to the nose. This caused the UAV to weigh approximately

3000 grams. The motor and propeller combination used was rated to move about 1500

grams, but the motor thrust test revealed it could carry about 1800 grams. Even without

MVNU Senior Design

93

the weights added, the sturdiness of the UAV caused it to be at least 500 grams too

heavy.

There ended up being two options to get the Mule to fly. One would be to find a

different motor and propeller combination with more thrust output. The other option

would be to redesign the wings and hull to make it less sturdy, but lighter. The problem

with the first solution is that it would require a much larger propeller. Increasing the

propeller size would inevitably lead to the propeller breaking during landing, not to

mention the danger of a longer propeller producing enough thrust to carry 3000 grams.

The other solution sounds like a better idea. However, this has its own problems. The

biggest problem is time. Frankly, it takes too much time to completely redesign the UAV.

Even after that is done, the UAV still has to be built again. The fastest turnaround for this

would likely be about two months. Unfortunately, this means that the Mule would never

be able to fly.

3.3 The Gander (UAV 1)
The team still needed to produce a couple of UAVs, which meant they would

have to pursue a different solution. After the team determined that the customized UAV

would be unable to fly, they set to work with recreating the Goose. This UAV,

nicknamed the Gander, would use another X-UAV Mini Talon body with the chosen

components inside of it. However, the difference between the Goose and the Gander is

that the Gander would hold more components. The Goose only held what was necessary

to fly it. The Gander had to hold the cameras, Raspberry Pi, airspeed sensor, as well as

everything else the Goose had.

This solution ended up being easy to implement since the team already knew the

body was able to fly. The team also knew that the imagery system works and is able to

stitch photos together, as well as run NDVI calculations. Thus, the only thing left to do

was put everything into the Gander and test to see if the imagery system worked in flight.

MVNU Senior Design

94

Fig. 3.3. The Gander

3.4 The Third Bird (UAV 2)
After the Gander was built, the team had to build one more UAV. This UAV,

named the Third Bird, would be identical to the Gander. Since one of the requirements of

the project is manufacturability, the team had to prove that the product could be

repeatedly made and manufactured. As of the time of writing this report, this is still a

work in progress. The goal is to finish this by May 13th, or prior to going to Guatemala.

MVNU Senior Design

95

4 Conclusions and Future Work
The main goal of this project was to “design and test a UAV used to determine the

health of plants in Guatemala.” Although the customized UAV body was unable to fly,

the team was able to deliver two UAVs capable of flight and ascertaining the health of

crops. The team was even able to put together a portable weather station in order to

determine whether flight can be achieved on any given day based upon the conditions.

The overall BOM can be seen in the Appendices section. This ended up costing

$3,081.90. However, this cost includes the cost of both UAVs as well as research and

development costs. Going more into detail, making the prototype Goose and even the

materials of the Mule pushed this price upwards. It was also expected that the original

cameras would be able to do what was wanted, but that ended up not being the case.

Also, some components had to be bought multiple times due to them breaking. These are

just a few examples of things that made the project more expensive. However, the BOM

and estimated cost for making one UAV can be seen below. This shows a cost of

$1,186.50. This much lower price is what the team would expect to pay if they had to

make one more UAV. Other UAVs tend to cost around $1000, so this falls close to that.

Table 4.1. BOM and Cost of Making a Single UAV

Item Price per Unit Quantity Sub-Total

X-UAV Mini Talon $ 69.99 1 $ 69.99

Foam Glue $ 11.50 1 $ 11.50

Cobra C-2814/16
Brushless Motor $ 37.99 1 $ 37.99

Cobra 33A ESC
with 3A Switching

BEC
 $ 29.99 1 $ 29.99

Uxcell RC
Propellers CW

9x4.5 Inch 2-Vane
 $ 13.49 1 $ 13.49

Seamuing 6Pcs
MG90S Micro $ 19.99 1 $ 19.99

MVNU Senior Design

96

Item Price per Unit Quantity Sub-Total

Servo

Ltvystore 10Pcs
Adjustable Pushrod

Connector
 $ 11.99 1 $ 11.99

4 Pcs LED Aircraft
Strobe Lights $ 12.99 1 $ 12.99

Matek H743-Wing
V3 Flight
Controller

 $ 109.99 1 $ 109.99

SiK Telemetry
Radio V3 $ 58.99 1 $ 58.99

Emax Pagoda 3B
5.8Ghz 50mm

Antenna
 $ 5.99 2 $ 11.98

Lumenier SM-25
25mW Micro VTX $ 11.99 1 $ 11.99

Caddx Ant FPV
Camera $ 20.99 1 $ 20.99

Matek Digital
Airspeed Sensor

ASPD-4525
 $ 47.99 1 $ 47.99

Spektrum SRXL2
DSMX Serial Micro

Receiver
 $ 31.99 1 $ 31.99

MATEKSYS M8Q-
5883 GPS Module $ 35.99 1 $ 35.99

Turnigy 5000mAh
4S 25C Lipo Pack $ 41.97 1 $ 41.97

LiPo Charger Lipo
Battery Balance

Charger RC
 $ 56.99 1 $ 56.99

FPV Monitor
5.8GHz $ 106.59 1 $ 106.59

MVNU Senior Design

97

Item Price per Unit Quantity Sub-Total

Realacc Triple Feed
Patch-1 5.8GHz

Antenna
 $ 16.99 1 $ 16.99

RC Controller $ 114.99 1 $ 114.99

Raspberry Pi 3* $ 35.00 1 $ 35.00

Raspberry Pi
Camera Module 3 $ 34.99 1 $ 34.99

Arducam Multi
Camera Adapter

Module V2.2
 $ 49.99 1 $ 49.99

Green Infrared
Filter $ 19.99 1 $ 19.99

OPTOLONG 1.25"
UV/IR Cut Filter $ 44.00 1 $ 44.00

iSOUL [4 Pack]
Screen Protector $ 4.99 1 $ 4.99

Wisesorb Silica Gel
Packets $ 8.49 1 $ 8.49

SanDisk 256GB
Ultra Fit USB 3.1 $ 19.99 1 $ 19.99

20 Pairs Mini Micro
6 Pin JST SH
1.0mm Cable

 $ 9.49 1 $ 9.49

DHT Electronics
2PCS coaxial Coax

Adapter
 $ 5.80 1 $ 5.80

FLY RC 2 Pack
XT90 Charging
Cable XT90 to
4.0mm Banana

Connector

 $ 8.99 1 $ 8.99

XT90 Connector
Male Female $ 10.99 1 $ 10.99

MVNU Senior Design

98

Item Price per Unit Quantity Sub-Total

Adapter for Battery
ESC

DTTRA 20 Pairs 20
AWG JST Plug
Connector 2 Pin

 $ 4.99 1 $ 4.99

yueton Rc 1-8s
Lipo Battery Tester $ 5.49 1 $ 5.49

BTF-LIGHTING
20 Pairs JST SM 3

Pin Connectors
 $ 9.99 1 $ 9.99

AINOPE USB
Extension Cable

1.5FT
 $ 4.99 1 $ 4.99

3pin FPV silicone
cable for RunCam $ 2.99 1 $ 2.99

Atnsinc 3Pcs
CP2102 USB 2.0 to

TTL 5Pin
 $ 9.99 1 $ 9.99

Dorhea 2PCS
24.4inch Micro SD

to SD Card
Extension

 $ 10.99 1 $ 10.99

Micro Center 32GB
Class 10 Micro

SDHC Flash
Memory Card

 $ 8.99 1 $ 8.99

Total 42 $ 1,186.50

For future work on this project, a flying, customized UAV and a working custom

PCB is desired.The team believes they would have been able to accomplish both of these

tasks if given more time. The process of making the customized UAV fly would have

involved a complete redesign and build. This would have likely taken another two

months. The team determined the problem with the customized PCB as well, which

MVNU Senior Design

99

would have required redesigning it and having it fabricated again. This could have been

done in one month.

It appears that the reason the team ran out of time had a few factors involved. One

is that the team is inexperienced. The team has never worked on a project of this scale,

and so was not able to properly schedule throughout the entire duration. Another factor

came with supply chain issues. There were multiple components that arrived much later

than expected, which pushed back time for testing and troubleshooting. Finally, the team

should have had smaller, more frequent meetings to check the progress of each team.

This would have allowed for each team to know exactly what to focus on at any given

point and the expected time frame for it.

Overall, the team is pleased with their work on all of the UAVs. At the end of the

day, the team was able to accomplish its original goal. Although not everything worked

as or when expected, the team was able to learn what it is like to be full-fledged engineers

and solve problems.

MVNU Senior Design

100

References
[1] Sr_Design_01Sept2022_Preview. Presentation.

[2] Fleddermann, C. B. (2014). Engineering ethics. Pearson Education.

[3] Flight Controller H743-wing V2 & V3. Matek Systems. (n.d.). Retrieved May

1, 2023, from http://www.mateksys.com/?portfolio=h743-wing-v2

[4] STM32CubeProg. STMicroelectronics. (n.d.). Retrieved May 1, 2023, from

https://www.st.com/en/development-tools/stm32cubeprog.html

[5] V. Monebhurrun, "Revision of IEEE Standard 145-2013: IEEE Standard for

Definitions of Terms for Antennas [Stand on Standards]," in IEEE

Antennas and Propagation Magazine, vol. 62, no. 3, pp. 117-117, June

2020, doi: 10.1109/MAP.2020.2983956.

[6] Benjie. (2022, October 10). Wireless Antenna Characteristics explained.

Study CCNP. Retrieved May 1, 2023, from https://study-

ccnp.com/wireless-antenna-characteristics-explained/

[7] Adminjem. (2023, April 5). Intro to antenna polarization - JEM engineering

blog. JEM Engineering. Retrieved May 1, 2023, from

https://jemengineering.com/blog-intro-to-antenna-polarization/

[8] FCC Online Table of Frequency Allocations, 7 C.F.R. § 2.106 (July 1, 2022).

[9] GPS & Compass Module M8Q-5883. Matek Systems. (n.d.). Retrieved May 1,

2023, from http://www.mateksys.com/?portfolio=m8q-5883

[10] DXS transmitter only. Spektrum. (n.d.). Retrieved May 1, 2023, from

https://www.spektrumrc.com/product/dxs-transmitter-

only/SPMR1010.html

[11] SRXL2 DSMX Serial Micro receiver. Spektrum SRXL2 DSMX Serial Micro

Receiver | Horizon Hobby. (n.d.). Retrieved May 1, 2023, from

https://www.horizonhobby.com/product/srxl2-dsmx-serial-micro-

receiver/SPM4650.html

[12] Amazon.com : Caddx Ant FPV camera 1200TVL global WDR OSD 1.8mm

ultra ... (n.d.). Retrieved May 1, 2023, from

https://www.amazon.com/Caddx-Camera-1200TVL-Global-

Aspect/dp/B088TDTL1M

MVNU Senior Design

101

[13] Lumenier SM-25 25MW Micro VTX - U.FL SMA. www.getfpv.com. (n.d.).

Retrieved May 1, 2023, from https://www.getfpv.com/lumenier-sm-25-

25mw-micro-vtx-u-fl-sma.html

[14] Emax pagoda 3B 5.8ghz 50mm antenna (SMA male). HeliPal.com. (n.d.).

Retrieved May 1, 2023, from https://www.helipal.com/products/emax-

pagoda-3b-5-8ghz-50mm-antenna-sma-

male?variant=21503497338940¤cy=USD&utm_medium=product_sync&

utm_source=google&utm_content=sag_organic&utm_campaign=sag_org

anic&gclid=CjwKCAjwo7iiBhAEEiwAsIxQEVs-

3JXKKvtXAFalMbebZjMSRVg2JJlAi8d3Y783DN5vyQ9HMHaN1RoCh

h0QAvD_BwE

[15] Banggood.com. (n.d.). Realacc triple feed patch-1 5.8ghz 9.4DBI directional

circular polarized FPV pagoda antenna for Fatshark Dji eachine goggles.

www.banggood.com. Retrieved May 1, 2023, from

https://usa.banggood.com/Realacc-Triple-Feed-Patch-1-5_8GHz-9_4dBi-

Directional-Circular-Polarized-FPV-Pagoda-Antenna-for-Fatshark-DJI-

Eachine-Goggles-p-1195261.html

[16] Amazon.com: FPV Monitor 5.8GHz 40channels 7inch LCD screen monitor

... (n.d.). Retrieved May 1, 2023, from

https://www.amazon.com/40Channels-Receiver-Quadcopter-Automatic-

Switching/dp/B07NMJ2ZV5

[17] Sik Telemetry Radio V3. Holybro. (n.d.). Retrieved May 1, 2023, from

https://holybro.com/products/sik-telemetry-radio-v3

[18] Battery Life Calculator | DigiKey Electronics. (2023). Digikey.com.

https://www.digikey.com/en/resources/conversion-calculators/conversion-

calculator-battery-life

[19] Turnigy 5000mah 4s 25c Lipo Pack W/XT-90. Hobbyking. (n.d.). Retrieved

April 28, 2023, from https://hobbyking.com/en_us/turnigy-battery-

5000mah-4s-25c-lipo-pack-xt-90.html

MVNU Senior Design

102

[20] Team, M. (2019, August 2). 6 Important Parameters for the Design-In of

Lithium Polymer Batteries – Jauch Blog-Seite. Jauch Blog-Seite.

https://www.jauch.com/blog/en/6-important-parameters-for-the-design-in-

of-lithium-polymer-

batteries/#:~:text=By%20default%2C%20lithium%20polymer%20cells,pr

evail%20when%20charging%20the%20cells

[21] #847080, M., Smerk, Squirrel, R., #439268, M., #30085, M., #1070593, M.,

#91888, M., #873709, M., #57306, M., #1493453, M., Richmund, & Ewf.

(n.d.). SparkFun humidity and temperature sensor breakout - SI7021.

SEN-13763 - SparkFun Electronics. Retrieved April 28, 2023, from

https://www.sparkfun.com/products/13763

[22] Industries, A. (n.d.). Adafruit MCP9600 I2C thermocouple amplifier. adafruit

industries blog RSS. Retrieved April 28, 2023, from

https://www.adafruit.com/product/4101

[23] Industries, A. (n.d.). Thermocouple amplifier MAX31855 Breakout Board

(MAX6675 upgrade). adafruit industries blog RSS. Retrieved April 28,

2023, from https://www.adafruit.com/product/269

[24] Wikimedia Foundation. (2023, February 28). Reflow soldering. Wikipedia.

Retrieved April 28, 2023, from

https://en.wikipedia.org/wiki/Reflow_soldering

[25] MicaSense Knowledge Base. (2022, September 30). Overview of agricultural

indices . MicaSense. Retrieved November 28, 2022, from

https://support.micasense.com/hc/en-us/articles/227837307-Overview-of-

Agricultural-Indices

[26] Maschke, T. (2004). Digitale Kameratechnik: Technik digitaler Kameras in

Theorie und Praxis. Springer Berlin Heidelberg.

[27] Choosing the Right Imagery: Best Management Practices for Color, NIR,

and NDVI Imagery | Integrated Crop Management. (2016). Iastate.edu.

https://crops.extension.iastate.edu/cropnews/2016/05/choosing-right-

imagery-best-management-practices-color-nir-and-ndvi-imagery

https://support.micasense.com/hc/en-us/articles/227837307-Overview-of-Agricultural-Indices
https://support.micasense.com/hc/en-us/articles/227837307-Overview-of-Agricultural-Indices

MVNU Senior Design

103

[28] IDB - Index DataBase. (2023). Indexdatabase.de.

https://www.indexdatabase.de/

[29] (2023). Innov8tivedesigns.com.

https://www.innov8tivedesigns.com/images/specs/Cobra_2814-

16_Specs.htm

[30] X-uav Mini Talon EPO 1300mm Wingspan V-tail FPV RC Model Radio

Remote. (2023). RCDrone. https://rcdrone.top/products/x-uav-mini-talon-

rc-kit

[31] Airfoil database list. (2023). Airfoiltools.com.

http://airfoiltools.com/search/airfoils?m=a

[32] Angle of Attack (AOA) | SKYbrary Aviation Safety. (2015). Skybrary.aero.

https://www.skybrary.aero/articles/angle-attack-aoa

[33] Installation and Getting Started — OpenDroneMap 3.1.3 documentation.

(2020). Opendronemap.org.

https://docs.opendronemap.org/installation/#id4

[34] Tutorials — OpenDroneMap 3.1.3 documentation. (2014).

Opendronemap.org. https://docs.opendronemap.org/tutorials/

[35] sidelap. (2023). TheFreeDictionary.com.

https://encyclopedia2.thefreedictionary.com/sidelap

[36] Camera Multiplexer for Raspberry Pi 4: Arducam Solutions for Your

Applications, and the Coming Surprises We Prepare for You - Arducam.

(2019, August 7). Arducam. https://www.arducam.com/arducam-multi-

camera-multiplexer-raspberry-pi-4-application/

[37] Raspberry Pi Documentation - Raspberry Pi hardware. (2014).

Raspberrypi.com.

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

MVNU Senior Design

104

Appendices

Appendix A
RGB and IR Image to Spectral Analysis 350nm - 1000nm:

% Luke Shoen Mount Vernon Nazarene University 4/10/2023

% This program requires two jpg files, one RGB and one IR. Also, the CIE

% 1931 Data is needed for RGB color analysis.

% Red subtractive difference method to find NIR Data

rgb_img = imread('IR_TEST1.jpg');

gray_img = rgb2gray(rgb_img);

red_channel = rgb_img(:,:,1);

nir_img = gray_img - red_channel;

wavelengths = linspace(650, 1000, size(nir_img, 2));

intensity = mean(nir_img, 1);

intensity = intensity/ max(intensity);

smoothed_intensity = smoothdata(intensity, 'movmean', 500);

p1 = plot(wavelengths, intensity, 'LineWidth', 0.5, 'Color', 'k', "LineStyle","-");

hold on

p2 = plot(wavelengths, smoothed_intensity,'Color','#A2142F','LineWidth', 2, "LineStyle"

,'-');

hold on

xlim([350 1000])

title('NIR Spectrum', 'FontSize',18);

%

% RGB to XYZ Tristimulus with Spectral Power Distribution Graph over

% visible spectrum range. This program needs a small .jpg file and an

% accompanying cie1931.mat color matching raw data.

%

rgbImage = imread('RGB_TEST1.jpg');

croppedImage = rgbImage(200:400, 200:400, :);

imwrite(croppedImage, 'cropped_image.jpg');

% Now need to convert RGB to XYZ tristimulus

% sRGB to XYZ conversion matrix

M = [0.4124564 0.3575761 0.1804375;

 0.2126729 0.7151522 0.0721750;

 0.0193339 0.1191920 0.9503041];

% Normalize RGB values to 0-1 range (dividing by 255)

croppedImage = double(croppedImage) ./ 255;

% Apply sRGB to XYZ conversion matrix (mutplies RGB values by 3x3 XYZ

% matrix, reshape is used to reshape RGB image data into 2D matrix with 3

% columns before multiplication

xyzImage = reshape(croppedImage, [], 3) * M;

% Reshape back to original image size

xyzImage = reshape(xyzImage, size(croppedImage));

MVNU Senior Design

105

% Convert XYZ to spectral data using CIE 1931 color matching functions

% Load CIE 1931 for cie1931.mat, 4 column matrix with conversion values for

% each wavlength.

load('cie1931.mat');

% Interpolate the color matching functions to match the image resolution.

% Each row of a column in selected using cie1931(:,x) and compared to the

% wavelength (column 1) to generate a [3x401] matrix cmf_interp descibing

% the cmf values for each wavelength within range (400nm total)

range = 380:1:780;

cmf_interp = [interp1(cie1931(:,1), cie1931(:,2), range, 'linear', 'extrap');

 interp1(cie1931(:,1), cie1931(:,3), range, 'linear', 'extrap');

 interp1(cie1931(:,1), cie1931(:,4), range, 'linear', 'extrap')];

% Normalize the color matching functions to a maximum of 1

cmf_interp = cmf_interp ./ max(cmf_interp(:));

% Calculate the spectral data using tristimulus values and color matching functions

% element wise multiplication of xyzImage and cmf_interp matricies,

% creating a 4th dimensional matrix called spectralData (row, column, RGB

% channels, and wavelength range)

spectralData = bsxfun(@times, xyzImage, reshape(cmf_interp, [1, 1, 3, numel(range)]));

spectralData = (sum(spectralData, [1, 2]))/2/10000;

% Plots the spectral curve, squeeze is used remove 2 dimensions of

% spectralData, making it 2 dimensional, which can be plotted as a function

h = plot(range, squeeze(spectralData), 'LineWidth', 2);

hold on

h(1).Color = 'r';

h(2).Color = 'g';

h(3).Color = 'b';

op = [h(1), h(2), h(3), p1, p2];

% Add legend with updated line colors

hold on

legend(op, 'Red Curve', 'Green Curve', 'Blue Curve','Raw NIR Data','Smoothed NIR Data',

'Location', 'northeast')

ax=gca;

ax.FontSize=18;

xlabel('Wavelength (nm)', 'FontSize', 18);

ylabel('Relative intensity','FontSize',18);

MVNU Senior Design

106

Appendix B
Custom PCB Code (main.c):

/* USER CODE BEGIN Header */

/**

Author: Owen Paulus - Mount Vernon Nazarene University

**

 * @file : main.c

 * @brief : Main program body

 **

 * @attention

 *

 * Copyright (c) 2022 STMicroelectronics.

 * All rights reserved.

 *

 * This software is licensed under terms that can be found in the LICENSE file

 * in the root directory of this software component.

 * If no LICENSE file comes with this software, it is provided AS-IS.

 *

 **

 */

/* USER CODE END Header */

/* Includes --*/

#include "main.h"

#include "fatfs.h"

/* Private includes --*/

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef ---*/

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define --*/

MVNU Senior Design

107

/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro ---*/

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---*/

 I2C_HandleTypeDef hi2c1;

SPI_HandleTypeDef hspi3;

UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

static const uint8_t Si7021_ADDR = 0x40<<1; // 7-bit I2C address for Si7021

/* USER CODE END PV */

/* Private function prototypes ---*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_USART2_UART_Init(void);

static void MX_I2C1_Init(void);

static void MX_SPI3_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**

 * @brief The application entry point.

MVNU Senior Design

108

 * @retval int

 */

int main(void)

{

 /* USER CODE BEGIN 1 */

 uint8_t buffer[12]; // buffer for data transfer between master and slave

 uint8_t buffer2[4];

 uint16_t code; // raw data for temperature/humidity measurements

 float humidity; // humidity measurement value

 float temperature; // temperature measurement value

 double btemp; // battery temperature measurement value

 /* USER CODE END 1 */

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

 HAL_Init();

 /* USER CODE BEGIN Init */

 /* USER CODE END Init */

 /* Configure the system clock */

 SystemClock_Config();

 /* USER CODE BEGIN SysInit */

 /* USER CODE END SysInit */

 /* Initialize all configured peripherals */

 MX_GPIO_Init();

 MX_USART2_UART_Init();

 MX_I2C1_Init();

 MX_FATFS_Init();

 MX_SPI3_Init();

MVNU Senior Design

109

 /* USER CODE BEGIN 2 */

//********SUBROUTINES********//

 //------------------- Functions ----------------//

 float Max31855_Read_Temp(uint8_t buffer[4]){

 uint8_t Error=0; // Thermocouple Connection acknowledge Flag

 uint32_t sign=0; // Sign bit

 //uint8_t DATARX[4];

 int Temp=0; // Temperature Variable

 Error = buffer[3]&0x07; // Error Detection

 sign = (buffer[0]&(0x80))>>7; // Sign Bit

calculation

 if(buffer[3] & 0x07) // Returns

Error Number

 return(-1*(buffer[3] & 0x07));

 else if(sign==1){ //

Negative Temperature

 Temp = (buffer[0] << 6) | (buffer[1] >> 2);

 Temp&=0b01111111111111;

 Temp^=0b01111111111111;

 return((double)-Temp/4);

 }

 else

// Positive Temperature

 {

 Temp = (buffer[0] << 6) | (buffer[1] >> 2);

 return((double)Temp / 4);

 }

MVNU Senior Design

110

 }

 // Subroutine for conversion from raw relative humidity data to readable data per the Si7021 datasheet

(%RH)

 float process_humi_code(uint16_t humi_code)

 {

 float value = (float)(((125.0 * humi_code) / 65536.0) - 6.0);

 if(value < 0)

 return 0;

 else if(value > 100)

 return 100;

 else

 return (float)value;

 }

 // Subroutine for conversion from raw temperature data to readable data per the Si7021 datasheet (Celsius)

 float process_temp_code(uint16_t temp_code)

 {

 return (float)(((175.72 * temp_code) / 65536.0) - 46.85);

 }

 // Subroutine to convert uint8 to uint16

 uint16_t convert_to_uint16(uint8_t bytes1[])

 {

 return (uint16_t)((bytes1[0]<<8) | bytes1[1]);

 }

 while (1)

 {

MVNU Senior Design

111

//********Saving to MicroSD********

 //********RH Measurement********//

 // Defining "cmd" as the command code to perform a RH measurement per the datasheet

 uint8_t cmd = 0xE5;

 // MCU sends command to the Si7021 I2C address to perform a RH measurement

 if(HAL_OK != HAL_I2C_Master_Transmit(&hi2c1, Si7021_ADDR, &cmd, 1, 10000))

 return -1;

 // MCU asks to receive the RH measurement data from the Si7021 and stores it in the buffer

 if(HAL_OK != HAL_I2C_Master_Receive(&hi2c1, Si7021_ADDR, buffer, 2, 10000))

 return -1;

 // the data within the buffer is converted to an unsigned integer ranging from 0 to 65535

 code = convert_to_uint16(buffer);

 // the unsigned integer (raw data) is passed through the humidity processing subroutine for

readable conversion

 humidity = process_humi_code(code);

 // The converted RH measurement is prepared to be displayed on the serial monitor

 sprintf((char*)buffer, "%u.%u RH\r\n",((unsigned int)humidity / 100),((unsigned int)humidity

% 100));

 // The converted data is sent to serial monitor display

 HAL_UART_Transmit(&huart2, buffer, strlen((char*)buffer), HAL_MAX_DELAY);

 HAL_Delay(500);

 //********Temperature Measurement********//

 // Defining "cmd1" as the command code to perform a temperature measurement after an RH

measurement per the datasheet

 uint8_t cmd1 = 0xE0;

 // MCU sends command to the Si7021 I2C address to perform a temperature measurement

MVNU Senior Design

112

 if(HAL_OK != HAL_I2C_Master_Transmit(&hi2c1, Si7021_ADDR, &cmd1, 1,

HAL_MAX_DELAY))

 return -1;

 // MCU asks to receive the temperature measurement data from the Si7021 and stores it in the

buffer

 if(HAL_OK != HAL_I2C_Master_Receive(&hi2c1, Si7021_ADDR, buffer, 2,

HAL_MAX_DELAY))

 return -1;

 // the data within the buffer is converted to an unsigned integer ranging from 0 to 65535

 code = convert_to_uint16(buffer);

 // the unsigned integer (raw data) is passed through the temperature processing subroutine for

readable conversion

 temperature = process_temp_code(code);

 // the converted temperature value is multiplied by 100 to display an accurate decimal reading in

degrees Celsius

 temperature *= 100;

 // The converted temperature measurement is prepared to be displayed on the serial monitor

 sprintf((char*)buffer, "%u.%u C Ambient\r\n",((unsigned int)temperature / 100),

 ((unsigned int)temperature % 100));

 // The converted data is sent to serial monitor display

 HAL_UART_Transmit(&huart2, buffer, strlen((char*)buffer), HAL_MAX_DELAY);

 HAL_Delay(500);

 //********Battery Temperature Measurement********//

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); // Low State for SPI

Communication

 HAL_Delay(250);

 HAL_SPI_Receive(&hspi3,buffer2,4,1000); // DATA Transfer

 HAL_Delay(250);

MVNU Senior Design

113

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); // High State for SPI

Communication

 btemp = Max31855_Read_Temp(buffer2); // Conversion to readable temperature

data in Celsius

 btemp *= 100;

 // The converted temperature measurement is prepared to be displayed on the serial monitor

 sprintf((char*)buffer2, "%u.%u C Battery\r\n",((unsigned int)btemp / 100),

 ((unsigned int)btemp % 100));

 // The converted data is sent to serial monitor display

 HAL_UART_Transmit(&huart2, buffer2, strlen((char*)buffer2), HAL_MAX_DELAY);

 HAL_Delay(5000);

 }

 /* USER CODE END WHILE */

MVNU Senior Design

114

Appendix C
Weather Station Arduino Code:

Author: Owen Paulus, Mount Vernon Nazarene University

#include <Adafruit_Si7021.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#include <Wire.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED_RESET 4 // Reset pin # (or -1 if sharing reset pin)

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

float RH = 0; // Relative Humidity Value

float Temp = 0; // Temperature (C) Value

float TempF = 0; // Temperature (F) Value

float Windms = 0; // Wind Speed (m/s) Value

float Windkmh = 0; // Wind Speed (km/h) Value

float Windkt = 0; // Wind Speed (knots) Value

float Windmph = 0; // Wind Speed (mph) Value

Adafruit_Si7021 sensor = Adafruit_Si7021();

void setup() {

 // put your setup code here, to run once:

sensor.begin();

Serial.begin(9600);

 if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // I2C Address 0x3C

 Serial.println(F("SSD1306 allocation failed"));

 for(;;);

 }

MVNU Senior Design

115

 delay(1000);

 display.clearDisplay(); // Clear OLED Screen

 display.setTextSize(2); // Set Text Size

 display.setTextColor(WHITE); // Set Text Color

}

void loop() {

 // put your main code here, to run repeatedly:

 //*****Analog Values*****//

int pot = analogRead(A1); // Potentiometer Value

int anemometer = analogRead(A0); // Anemometer Analog Voltage

// m/s = (a-82)/204.0*32.4 204=1V

 //*****Unit Conversions*****//

Temp = sensor.readTemperature(); // Read Temperature in C

RH = sensor.readHumidity(); // Read Relative Humidity

TempF = (Temp*1.8)+32; // Temperature in F

Windms = (anemometer-82)/204.0*32.4; // Wind Speed in m/s

Windkmh = Windms*3600/1000; // Wind Speed in km/h

Windkt = Windkmh/1.852; // Wind Speed in knots

Windmph= Windkmh/1.609; // Wind Speed in mph

 //*****Temperature*****//

 display.clearDisplay();

 display.setCursor(0,0);

 display.print("T=");

 display.setCursor(26,0);

 if (pot>100){

 display.print(Temp);

 display.setCursor(90,0);

 display.print("C");

 } else {

 display.print(TempF);

 display.setCursor(90,0);

MVNU Senior Design

116

 display.print("F");

}

 //*****Relative Humidity*****//

 display.setCursor(0,24);

 display.print("RH=");

 display.setCursor(37,24);

 display.print(RH);

 display.setCursor(100,24);

 display.print("%");

 //*****Wind Speed*****//

 display.setCursor(0,48);

 display.print("WS=");

 display.setCursor(37,48);

 if (pot>640){

 display.print(Windms,1);

 display.setCursor(90,48);

 display.print("m/s");

 }

else if (pot>380&pot<640){

 display.print(Windkmh,1);

 display.setCursor(90,48);

 display.print("kmh");

}

else if (pot>100&pot<380){

 display.print(Windkt,1);

 display.setCursor(90,48);

 display.print("kt");

}

else {

 display.print(Windmph,1);

 display.setCursor(90,48);

MVNU Senior Design

117

 display.print("mph");

}

 display.display();

 delay(500);

}

MVNU Senior Design

118

Appendix D
RGB and IR image to NDVI MATLAB Test Program
%Luke Shoen Mount Vernon Nazarene University 4/27/2023

% INFRARED AND RGB IMAGE TO NDVI IMAGE IN HSV COLORMAP

rgb_img = imread('rgb1.jpg');

nir_img = imread('nir1.jpg');

% will have to change trans val manually

nirtrans = imtranslate(nir_img, [130, 210]);

rgb_img_cropped = im2double(rgb_img);

nir_img_cropped = im2double(nirtrans);

ndvi = (nir_img_cropped - rgb_img_cropped) ./ (nir_img_cropped + rgb_img_cropped);

ndvi_gray = rgb2gray(ndvi);

imshow(ndvi_gray)

imwrite(ndvi_gray, 'ndvigray.jpg')

img = imread('ndvigray.jpg');

img_rgb = ind2rgb(img, hsv);

img_size = size(img_rgb);

crop_height = round(img_size(1)*0.80);

img_rgb_cropped = img_rgb(ceil((img_size(1)-

crop_height)/2):floor((img_size(1)+crop_height)/2), :, :);

imshow(img_rgb_cropped);

imwrite(img_rgb_cropped,'NDVIfin.jpg')

caxis([-1 1])

colormap_subset = hsv(64); % Use 64 colors

colormap_subset = colormap_subset(1:23,:); % Use only a subset of the colormap

colormap(colormap_subset) % Set the colormap for the colorbar

Colorbar

MVNU Senior Design

119

Appendix E
Original Sample RGB and IR Photos for NDVI Analysis

MVNU Senior Design

120

Appendix F
Derived Governing Equations

MVNU Senior Design

121

MVNU Senior Design

122

MVNU Senior Design

123

MVNU Senior Design

124

MVNU Senior Design

125

MVNU Senior Design

126

MVNU Senior Design

127

MVNU Senior Design

128

MVNU Senior Design

129

MVNU Senior Design

130

MVNU Senior Design

131

MVNU Senior Design

132

Appendix G
Explanation of Networking Protocols

A Virtual Private Network (VPN) is a network technology that allows a user to create a

secure and encrypted connection over the internet to another network, such as a company

network, a university network, or a public Wi-Fi hotspot.

When a user connects to a VPN, their device (the client) creates a secure and encrypted

tunnel to the VPN server. This is done by encapsulating the data packets in an additional

layer of encryption, which makes it difficult for anyone to intercept or view the data

being transmitted over the internet.

The encryption used in a VPN is typically based on the Secure Sockets Layer (SSL) or

Transport Layer Security (TLS) protocol. This encryption protocol establishes a secure

and encrypted connection between the client and the VPN server, which is used to

transmit data securely over the internet.

Once the VPN connection is established, the user's device appears as if it is on the same

local network as the VPN server, even if it is located in a different geographic location.

This allows the user to access resources that are only available on that network, such as

files, applications, and services.

A remote desktop session utilizing Microsoft’s proprietary Remote Desktop Protocol

(RDP) allows for the remote-control of a desktop environment. When a user initiates an

RDP session, their device (the client) sends a request to the target device (the server) to

establish a remote desktop session. The server responds by setting up a virtual display

screen and sending that display to the client.

The client then renders the display on the user's screen, which enables them to see and

interact with the target device's desktop environment. This allows the user to remotely

control the target device as if they were physically present at that device.

MVNU Senior Design

133

Combining these two protocols, VPN and RDP, a client can control when they would like

to be able to be controlled by a remote device by using the tunnel in reverse. Thus, a

client on the same VPN server can initialize an RDP session to control the other client. If

the original client does not want to be able to be controlled remotely, they can disable the

VPN session, cutting off the RDP session. This serves as both a safety and privacy

feature.

Being a client on a VPN does not require any port forwarding. However, if the VPN does

not connect, there is no ability for the remote user to connect to the device. This is not

ideal for devices that are running headless, having no input or output devices connected.

Instead, a secure-socket layer (SSL) tunnel is more ideal. VPNs utilize this tunneling

method, but using the protocol directly allows for better use in daemons. Cloudflare has

programmed a very good SSL daemon called cloudflared and is readily available on

almost all linux distributions. The user can simply choose what services they would like

forwarded to a domain, and these services can be accessed from anywhere without port

forwarding. This is all part of Cloudflare’s Zero Trust security suite included in their

domain name system (DNS) hosting subscription.

MVNU Senior Design

134

Appendix H
Open Drone Maps Example Report

MVNU Senior Design

135

MVNU Senior Design

136

MVNU Senior Design

137

MVNU Senior Design

138

MVNU Senior Design

139

Appendix I
Global Positioning System Testing Breadboard and Code

from board import *

from time import *

import board

import busio

import sdcardio

import storage

import time

import adafruit_gps

from digitalio import DigitalInOut, Direction

sleep(1)

spi = busio.SPI(board.D8, board.MOSI, board.MISO)

MVNU Senior Design

140

cs = board.D0

sd = sdcardio.SDCard(spi, cs)

led = DigitalInOut(board.LED)

led.direction = Direction.OUTPUT

vfs = storage.VfsFat(sd)

storage.mount(vfs, '/sd')

uart = busio.UART(board.TX, board.RX, baudrate=9600,

timeout=10)

gps = adafruit_gps.GPS(uart, debug=True)

gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0") #record standard gps data

gps.send_command(b"PMTK220,5000") #wait 5 seconds between

readings

last_print = time.monotonic()

while True:

 with open("/sd/pico.txt", "w") as file:

 led.value = True

 # Make sure to call gps.update() every loop iteration

and at least twice

 # as fast as data comes from the GPS unit (usually

every second).

 # This returns a bool that's true if it parsed new

data (you can ignore it

 # though if you don't care and instead look at the

has_fix property).

 gps.update()

MVNU Senior Design

141

 # Every second print out current location details if

there's a fix.

 current = time.monotonic()

 led.value = False

 if current - last_print >= 1.0:

 last_print = current

 if not gps.has_fix:

 # Try again if we don't have a fix yet.

 print("Waiting for fix...")

 continue

 # We have a fix! (gps.has_fix is true)

 # Print out details about the fix like location,

date, etc.

 file.write("=" * 40) # Print a separator line.

 file.write(

 "Fix timestamp: {}/{}/{}

{:02}:{:02}:{:02}".format(

 gps.timestamp_utc.tm_mon, # Grab parts

of the time from the

 gps.timestamp_utc.tm_mday, #

struct_time object that holds

 gps.timestamp_utc.tm_year, # the fix

time. Note you might

 gps.timestamp_utc.tm_hour, # not get

all data like year, day,

 gps.timestamp_utc.tm_min, # month!

 gps.timestamp_utc.tm_sec,

)

)

 file.write("Latitude: {0:.6f}

degrees".format(gps.latitude))

MVNU Senior Design

142

 file.write("Longitude: {0:.6f}

degrees".format(gps.longitude))

 file.write(

 "Precise Latitude: {:2.}{:2.4f}

degrees".format(

 gps.latitude_degrees,

gps.latitude_minutes

)

)

 file.write(

 "Precise Longitude: {:2.}{:2.4f}

degrees".format(

 gps.longitude_degrees,

gps.longitude_minutes

)

)

 file.write("Fix quality:

{}".format(gps.fix_quality))

 # Some attributes beyond latitude, longitude and

timestamp are optional

 # and might not be present. Check if they're

None before trying to use!

 if gps.satellites is not None:

 file.write("# satellites:

{}".format(gps.satellites))

 if gps.altitude_m is not None:

 file.write("Altitude: {}

meters".format(gps.altitude_m))

 if gps.speed_knots is not None:

 file.write("Speed: {}

knots".format(gps.speed_knots))

 if gps.track_angle_deg is not None:

MVNU Senior Design

143

 file.write("Track angle: {}

degrees".format(gps.track_angle_deg))

 if gps.horizontal_dilution is not None:

 file.write("Horizontal dilution:

{}".format(gps.horizontal_dilution))

 if gps.height_geoid is not None:

 file.write("Height geoid: {}

meters".format(gps.height_geoid))

MVNU Senior Design

144

Appendix J
Global Positioning System Testing Case Renders

Render of the Lid Locking Close-up

Render of the Open Case

MVNU Senior Design

145

Render of the completed case

MVNU Senior Design

146

Appendix K
Global Positioning System Testing Data

*

Fix timestamp: 11/6/2022 00:46:15

Lat: 15.470757

Long: -90.386906

Fix qual: 2

sats: 14, Alt: 1309.5 m, Speed: 0.047 knots, Horizontal

dilution: 1.06, Height geoid: -5.7 m

*

Fix timestamp: 11/6/2022 00:46:16

Lat: 15.470757

Long: -90.386906

Fix qual: 2

sats: 14, Alt: 1309.6 m, Speed: 0.037 knots, Horizontal

dilution: 1.06, Height geoid: -5.7 m

*

Fix timestamp: 11/6/2022 00:46:17

Lat: 15.470761

Long: -90.386906

Fix qual: 2

sats: 14, Alt: 1309.7 m, Speed: 0.059 knots, Horizontal

dilution: 1.06, Height geoid: -5.7 m

MVNU Senior Design

147

Appendix L
Global Positioning System Testing Instructions

Appendix M

MVNU Senior Design

148

Overall BOM

Item Unit Price Quantity Sub-Total
2 Sets for

Raspberry Pi
Camera

 $ 23.99 1 $ 23.99

Matek H743-Wing
V3 Flight
Controller

 $ 109.99 1 $ 109.99

MATEKSYS
M8Q-5883 GPS

Module
 $ 35.99 1 $ 35.99

Matek Digital
Airspeed Sensor

ASPD-4525
 $ 47.99 1 $ 47.99

X-UAV Mini
Talon $ 69.99 1 $ 69.99

Arducam 64MP
Autofocus Camera $ 59.99 1 $ 59.99

Caddx Ant FPV
Camera $ 20.99 1 $ 20.99

Green Infrared
Filter $ 19.99 1 $ 19.99

Flash Memory
Card $ 8.99 1 $ 8.99

Mini Portable
Charger 5000mAh $ 9.89 1 $ 9.89

Seeed Studio
XIAO RP2040

Microcontroller
 $ 9.49 1 $ 9.49

AiTrip 3PCS
Micro SC Card

Module
 $ 5.99 1 $ 5.99

2Pack GPS
Module $ 17.99 1 $ 17.99

Humidity and
Temperature

Breakout Board
 $ 10.95 1 $ 10.95

Foam Glue $ 11.50 1 $ 11.50
RC Controller $ 114.99 1 $ 114.99

MVNU Senior Design

149

Item Unit Price Quantity Sub-Total
RC Receiver $ 19.99 1 $ 19.99
FPV Monitor

5.8GHz $ 106.59 1 $ 106.59

TrueRC D-Pole
2.4GHz MK II

Antenna
 $ 7.99 1 $ 7.99

Adafruit
MCP9600 I2C
Thermocouple

Amplifier

 $ 15.95 1 $ 15.95

DHT Electronics
2PCS coaxial Coax

Adapter
 $ 5.80 1 $ 5.80

OPTOLONG
1.25" UV/IR Cut

Filter
 $ 44.00 1 $ 44.00

Emax Pagoda 3B
5.8Ghz Stubby
30mm Antenna

 $ 5.99 1 $ 5.99

Emax Pagoda 3B
5.8Ghz 50mm

Antenna
 $ 5.99 1 $ 5.99

Realacc Triple
Feed Patch-1

5.8GHz Antenna
 $ 16.99 1 $ 16.99

Arducam 64MP
Autofocus Camera $ 59.99 1 $ 59.99

Lemon Rx 6
Channel Full

Range Receiver
 $ 17.99 1 $ 17.99

SiK Telemetry
Radio V3 $ 66.00 1 $ 66.00

Lumenier SM-25
25mW Micro VTX $ 11.99 1 $ 11.99

Cobra C-2814/16
Brushless Motor $ 37.99 1 $ 37.99

Uxcell RC
Propellers CW

9x4.5 Inch 2-Vane
 $ 13.49 1 $ 13.49

Cobra 33A ESC
with 3A Switching

BEC
 $ 29.99 1 $ 29.99

Turnigy 5000mAh
4S 25C Lipo Pack $ 41.97 1 $ 41.97

MVNU Senior Design

150

Item Unit Price Quantity Sub-Total
LiPo Charger Lipo

Battery Balance
Charger RC

 $ 56.99 1 $ 56.99

FLY RC 2 Pack
XT90 Charging
Cable XT90 to
4.0mm Banana

Connector

 $ 8.99 1 $ 8.99

XT90 Connector
Male Female
Adapter for
Battery ESC

 $ 10.99 1 $ 10.99

Thermocouple
Amplifier

MAX31855
breakout board

 $ 14.95 1 $ 14.95

MicroSD card
breakout board+ $ 7.50 1 $ 7.50

iSOUL [4 Pack]
Screen Protector $ 4.99 1 $ 4.99

Spektrum SRXL2
DSMX Serial

Micro Receiver
 $ 31.99 1 $ 31.99

Seamuing 6Pcs
MG90S Micro

Servo
 $ 19.99 1 $ 19.99

Arducam 64MP
Autofocus Camera $ 59.99 1 $ 59.99

Spektrum Ws2000
Wireless USB RC
Flight Simulator

Dongle

 $ 43.93 1 $ 43.93

SOQUARTZ 2GB
COMPUTE

MODULE W
 $ 34.99 1 $ 34.99

SOQUARTZ
"MODEL A"
BASEBOARD

 $ 24.99 1 $ 24.99

NEIKO 20713A
Digital

Tachometer
 $ 24.99 1 $ 24.99

Lumenier SM-25 $ 11.99 1 $ 11.99

MVNU Senior Design

151

Item Unit Price Quantity Sub-Total
25mW Micro VTX

Medpride
Disposable Scalpel

Blades
 $ 6.97 1 $ 6.97

SEN-13763 $ 10.95 2 $ 21.90
Excelta Tapered

Ultra-Fine
Tweezers

 $ 6.54 1 $ 6.54

MATEKSYS
M8Q-5883 GPS

Module
 $ 35.99 1 $ 35.99

Matek H743-Wing
V3 Flight
Controller

 $ 109.99 1 $ 109.99

RC Controller $ 114.99 1 $ 114.99
Spektrum SRXL2

DSMX Serial
Micro Receiver

 $ 31.99 1 $ 31.99

Cobra C-2814/16
Brushless Motor $ 37.99 1 $ 37.99

Cobra 33A ESC
with 3A Switching

BEC
 $ 29.99 1 $ 29.99

LiPo Charger Lipo
Battery Balance

Charger RC
 $ 56.99 1 $ 56.99

1/8 inch Balsa
Wood $ 23.99 1 $ 23.99

FPV Monitor
5.8GHz $ 106.59 1 $ 106.59

Emax Pagoda 3B
5.8Ghz 50mm

Antenna
 $ 5.99 2 $ 11.98

Realacc Triple
Feed Patch-1

5.8GHz Antenna
 $ 16.99 1 $ 16.99

Caddx Ant FPV
Camera $ 20.99 1 $ 20.99

MVNU Senior Design

152

Item Unit Price Quantity Sub-Total
SiK Telemetry

Radio V3 $ 58.99 1 $ 58.99

KARBXON
Carbon Fiber

Tube 12x8x1000
 $ 30.94 1 $ 30.94

KARBXON
Carbon Fiber

Tube 8x6x1000
 $ 28.99 1 $ 28.99

KARBXON
Carbon Fiber

Tube 6x4x1000
 $ 16.96 1 $ 16.96

KARBXON
Carbon Fiber

Tube 5x3x1000
 $ 15.96 1 $ 15.96

Turnigy Heavy
Duty 5000mAh 4S

60C Lipo Pack
 $ 49.99 1 $ 49.99

Arducam Multi
Camera Adapter

Module V2.2
 $ 49.99 1 $ 49.99

UCTRONICS 0.96
Inch OLED

Module
 $ 6.99 1 $ 6.99

Flite Test Maker
Foam Board $ 49.99 1 $ 49.99

Anemometer
Wind Speed

Sensor
 $ 44.95 1 $ 44.95

Crazepony
400mAh 2S 7.4V
30C LiPo Battery

 $ 13.99 1 $ 13.99

DTTRA 20 Pairs
20 AWG JST Plug
Connector 2 Pin

 $ 4.99 1 $ 4.99

Wisesorb Silica
Gel Packets $ 8.49 1 $ 8.49

Ltvystore 10Pcs
Adjustable

Pushrod
Connector

 $ 11.99 1 $ 11.99

Mini Nano V3.0
ATmega328P $ 12.99 1 $ 12.99

yueton Rc 1-8s $ 5.49 1 $ 5.49

MVNU Senior Design

153

Item Unit Price Quantity Sub-Total
Lipo Battery

Tester
Seamuing 6Pcs
MG90S Micro

Servo
 $ 19.99 1 $ 19.99

BTF-LIGHTING
20 Pairs JST SM 3

Pin Connectors
 $ 9.99 1 $ 9.99

X-UAV Mini
Talon $ 69.99 1 $ 69.99

SanDisk 256GB
Ultra Fit USB 3.1 $ 19.99 3 $ 59.97

AINOPE USB
Extension Cable

1.5FT
 $ 4.99 2 $ 9.98

Arducam Multi
Camera Adapter

Module V2.2
 $ 49.99 1 $ 49.99

Matek Digital
Airspeed Sensor

ASPD-4525
 $ 47.99 1 $ 47.99

3pin FPV silicone
cable for RunCam $ 2.99 1 $ 2.99

5.8GHz FPV
Triple Feed Patch

Antenna
 $ 15.89 1 $ 15.89

4 Pcs LED
Aircraft Strobe

Lights
 $ 12.99 1 $ 12.99

Atnsinc 3Pcs
CP2102 USB 2.0 to

TTL 5Pin
 $ 9.99 1 $ 9.99

Dorhea 2PCS
24.4inch Micro SD

to SD Card
Extension

 $ 10.99 1 $ 10.99

Micro Center
32GB Class 10
Micro SDHC

Flash Memory
Card

 $ 8.99 1 $ 8.99

MVNU Senior Design

154

Item Unit Price Quantity Sub-Total
Uxcell RC

Propellers CW
9x4.5 Inch 2-Vane

 $ 13.49 3 $ 40.47

Ltvystore 10Pcs
Adjustable

Pushrod
Connector

 $ 11.99 2 $ 23.98

20 Pairs Mini
Micro 6 Pin JST
SH 1.0mm Cable

 $ 9.49 1 $ 9.49

X-UAV Mini
Talon $ 69.99 2 $ 139.98

Matek Digital
Airspeed Sensor

ASPD-4525
 $ 47.99 1 $ 47.99

Total 105 $ 3,081.90

MVNU Senior Design

155

Appendix N
Photo-taking Module Code
#!/usr/bin/python3

from picamera2 import Picamera2, Preview

import RPi.GPIO as gp

import time,os

from libcamera import controls

import time, subprocess

from datetime import datetime, timezone, timedelta

import gpsd

import stat

max_width = 4608

max_height = 2592

#change this to the flying height above ground

alt = 200

#DO NOT CHANGE

DISTANCE = 1.983*alt*(1-.68)

#disables warnings for mis-configurations

gp.setwarnings(False)

#allows the board state to be alterred

gp.setmode(gp.BOARD)

#sets the gpio pins for the Arducam Multiplexer as output

gp.setup(7, gp.OUT)

gp.setup(11, gp.OUT)

MVNU Senior Design

156

gp.setup(12, gp.OUT)

#Truth table for Multiplexer module

Pin 7: 0 1 0 1

Pin 11: 0 0 1 1

Pin 12: 1 1 0 0

Selection: A B C D

#for this program, "takeRGB" uses Camera A and "takeIR"

uses Camera C

#to use different cameras, use change the "i2c = " to the

following accordingly

 # Camera A: i2cset -y 1 0x70 0x00 0x04

 # Camera B: i2cset -y 1 0x70 0x00 0x05

 # Camera C: i2cset -y 1 0x70 0x00 0x06

 # Camera D: i2cset -y 1 0x70 0x00 0x07

def start():

 gpsd.connect()

 global picam2

 picam2 = Picamera2()

 camera_config =

picam2.create_still_configuration(main={"size":

(max_width,max_height)})

 picam2.set_controls({"AfMode":

controls.AfModeEnum.Continuous,"ExposureTime": 1000})

 #picam2.exposure_mode = 'short'

 #picam2.shutter_speed = 1000

 picam2.configure(camera_config)

def takeRGB():

 #take photo and initialize camera A

MVNU Senior Design

157

 i2c = "i2cset -y 1 0x70 0x00 0x04"

 os.system(i2c)

 gp.output(7, False)

 gp.output(11, False)

 gp.output(12, True)

 capture()

def takeIR():

 #take photo and initialize camera C

 i2c = "i2cset -y 1 0x70 0x00 0x06"

 os.system(i2c)

 gp.output(7, False)

 gp.output(11, True)

 gp.output(12, False)

 capture()

def getTimestamp():

 now = datetime.now(timezone(timedelta(hours=-4)))

 return now.strftime("%Y-%m-%d_%H:%M:%S.%f_%Z")

def capture():

 start()

 picam2.start()

 file =

find_first_connected_usb+str(getTimestamp())+".jpg"

 picam2.capture_file(file)

 picam2.close()

def on_change(camera, gps):

 global last_position

 if last_position is None:

MVNU Senior Design

158

 last_position = gps.position()

 return

 distance = gps.distance_to(last_position)

 if distance > DISTANCE:

 takeRGB()

 time.sleep(0.02)

 takeIR()

 time.sleep(0.02)

 last_position = gps.position()

def find_first_connected_usb():

 # Get the list of all connected USB devices

 devices = [os.path.join("/dev/disk/by-id", d) for d in

os.listdir("/dev/disk/by-id")]

 # Find the first USB device that is formatted in FAT32

 for device in devices:

 if os.path.isdir(device) and

os.stat(device).st_fsystem == stat.S_IFMT_VFAT:

 return device

 # No USB devices found

 return None

def check_and_format_usb(usb_path):

 # Check if the USB is formatted in FAT32

 if not os.path.isdir(usb_path):

 raise ValueError("USB path is not valid")

MVNU Senior Design

159

 file_system = os.stat(usb_path).st_fsystem

 if file_system != stat.S_IFMT_VFAT:

 # Format the USB to FAT32

 print("Formatting USB to FAT32...")

 os.system("mkdosfs -F 32 {}{}".format(usb_path,

os.sep))

 return usb_path

def delete_oldest_file(usb_path):

 # Get the list of files on the USB

 files = os.listdir(usb_path)

 # Get the size of the USB

 total_size = os.statvfs(usb_path).f_bsize *

os.statvfs(usb_path).f_blocks

 # Get the size of the oldest file

 oldest_file = min(files, key=lambda f:

os.stat(os.path.join(usb_path, f)).st_size)

 oldest_file_size = os.stat(os.path.join(usb_path,

oldest_file)).st_size

 # Delete the oldest file if the USB has less than

200MB left

 if total_size - oldest_file_size < 200 * 1024 * 1024:

 print("Deleting oldest file: {}".format(oldest_file))

 os.remove(os.path.join(usb_path, oldest_file))

def main():

 # Find the first connected USB device

 usb_path = find_first_connected_usb()

MVNU Senior Design

160

 # Check if the USB is formatted in FAT32 and format it

if it is not

 usb_path = check_and_format_usb(usb_path)

 while True:

 # Delete the oldest file on the drive if the drive has

less than 200MB left

 delete_oldest_file(usb_path)

 on_change() #takes the RGB and IR photo if GPS

location is > DISTANCE

 time.sleep(0.02) #allows time to clear the buffer

 #Camera.start()

 takeIR()

 time.sleep(0.02) #allows time to clear the buffer

 with gpsd.GPSD() as gps: #updates the current gps

coordinates

 gps.stream(gpsd.WATCH_ENABLE |

gpsd.WATCH_NEWSTYLE)

 gps.on_change = on_change

main()

if __name__ == "__main__":

 main()

 gp.output(7, False)

 gp.output(11, False)

 gp.output(12, True)

	Abstract
	Acknowledgements
	Table of Contents
	List of Abbreviations and Nomenclature

	1 Introduction/Problem Definition
	1.1 Team Structure
	1.2 Gantt Chart

	2 Design
	2.1 Electrical Team
	Communication Systems
	Power System
	Additional Custom Designs

	2.2 Imagery Team
	Crop Analysis
	Camera System
	Spectral Analysis
	Camera Case
	Lessons Learned

	2.3 Design and Manufacturing Team
	Motor Selection & Testing
	Initial Prototype
	Wing Design
	Final UAV Design

	2.4 Software Team
	Deliverables
	Software Selection and Initial Testing
	Remote Technical Support and Updating
	GPS Testing
	Single Board Computer and Camera Hardware Selection
	Software Overview and Hardware Interfacing
	Software Conclusion

	3 UAV Iterations
	3.1 The Goose (Prototype)
	3.2 The Mule (Custom Body)
	3.3 The Gander (UAV 1)
	3.4 The Third Bird (UAV 2)

	4 Conclusions and Future Work
	References
	Appendices

